Sequence-based detection of emerging antigenically novel influenza A viruses

被引:0
|
作者
Forna, Alpha [1 ,2 ,4 ]
Weedop, K. Bodie [1 ]
Damodaran, Lambodhar [4 ]
Hassell, Norman [5 ]
Kondor, Rebecca [5 ]
Bahl, Justin [2 ,4 ]
Drake, John M. [1 ,2 ,6 ]
Rohani, Pejman [1 ,2 ,3 ,6 ]
机构
[1] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA
[2] Univ Georgia, Ctr Ecol Infect Dis, Athens, GA 30602 USA
[3] Univ Georgia, Dept Infect Dis, Athens, GA 30602 USA
[4] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30606 USA
[5] CDCP, Atlanta, GA 30329 USA
[6] Ctr Influenza Dis & Emergence Res CIDER, Athens, GA 30602 USA
关键词
antigenic transition; infectious disease forecasting; influenza virus; unsupervised machine learning; viral evolution; SUPPORT; PREDICTION; STABILITY; EVOLUTION; VARIANTS; PEPTIDES; PROTEIN;
D O I
10.1098/rspb.2024.0790
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detection of evolutionary transitions in influenza A (H3N2) viruses' antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman's index, indicative of the virus's cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD's efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Novel Sequence-Based Mapping of Recently Emerging H5NX Influenza Viruses Reveals Pandemic Vaccine Candidates
    Anderson, Christopher S.
    DeDiego, Marta L.
    Thakar, Juilee
    Topham, David J.
    [J]. PLOS ONE, 2016, 11 (08):
  • [2] Detection of animal viruses using nucleic acid sequence-based amplification (NASBA)
    Lau, L. T.
    Fung, Y. W. W.
    Yu, A. C. H.
    [J]. NEW DIAGNOSTIC TECHNOLOGY: APPLICATIONS IN ANIMAL HEALTH AND BIOLOGICS CONTROLS, 2006, 126 : 7 - +
  • [3] Two outbreaks of influenza caused by antigenically different viruses
    Magill, TP
    Tyndall, M
    [J]. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE, 1941, 46 : 371 - 374
  • [4] Selection of antigenically advanced variants of seasonal influenza viruses
    Li, Chengjun
    Hatta, Masato
    Burke, David F.
    Ping, Jihui
    Zhang, Ying
    Ozawa, Makoto
    Taft, Andrew S.
    Das, Subash C.
    Hanson, Anthony P.
    Song, Jiasheng
    Imai, Masaki
    Wilker, Peter R.
    Watanabe, Tokiko
    Watanabe, Shinji
    Ito, Mutsumi
    Iwatsuki-Horimoto, Kiyoko
    Russell, Colin A.
    James, Sarah L.
    Skepner, Eugene
    Maher, Eileen A.
    Neumann, Gabriele
    Klimov, Alexander I.
    Kelso, Anne
    McCauley, John
    Wang, Dayan
    Shu, Yuelong
    Odagiri, Takato
    Tashiro, Masato
    Xu, Xiyan
    Wentworth, David E.
    Katz, Jacqueline M.
    Cox, Nancy J.
    Smith, Derek J.
    Kawaoka, Yoshihiro
    [J]. NATURE MICROBIOLOGY, 2016, 1 (06):
  • [5] Selection of antigenically advanced variants of seasonal influenza viruses
    Li C.
    Hatta M.
    Burke D.F.
    Ping J.
    Zhang Y.
    Ozawa M.
    Taft A.S.
    Das S.C.
    Hanson A.P.
    Song J.
    Imai M.
    Wilker P.R.
    Watanabe T.
    Watanabe S.
    Ito M.
    Iwatsuki-Horimoto K.
    Russell C.A.
    James S.L.
    Skepner E.
    Maher E.A.
    Neumann G.
    Klimov A.I.
    Kelso A.
    McCauley J.
    Wang D.
    Shu Y.
    Odagiri T.
    Tashiro M.
    Xu X.
    Wentworth D.E.
    Katz J.M.
    Cox N.J.
    Smith D.J.
    Kawaoka Y.
    [J]. Nature Microbiology, 1 (6)
  • [6] Prospects for a sequence-based taxonomy of influenza A virus subtypes
    Poon, Art F. Y.
    [J]. VIRUS EVOLUTION, 2024, 10 (01)
  • [7] Sequence-based pangenomic core detection
    Schulz, Tizian
    Wittler, Roland
    Stoye, Jens
    [J]. ISCIENCE, 2022, 25 (06)
  • [8] Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses
    Lau, Lok Ting
    Feng, Xiao Yan
    Lam, Tsz Yan
    Hui, Hung Kit
    Yu, Albert Cheung Hoi
    [J]. JOURNAL OF VIROLOGICAL METHODS, 2010, 168 (1-2) : 251 - 254
  • [9] Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation
    Anderson, Christopher S.
    McCall, Patrick R.
    Stern, Harry A.
    Yang, Hongmei
    Topham, David J.
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [10] Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation
    Christopher S. Anderson
    Patrick R. McCall
    Harry A. Stern
    Hongmei Yang
    David J. Topham
    [J]. BMC Bioinformatics, 19