Classification of Diagnostic Certainty in Radiology Reports with Deep Learning

被引:3
|
作者
Sugimoto, Kento [1 ]
Wada, Shoya [1 ,2 ]
Konishi, Shozo [1 ]
Okada, Katsuki [1 ]
Manabe, Shirou [1 ,2 ]
Matsumura, Yasushi [1 ,3 ]
Takeda, Toshihiro [1 ]
机构
[1] Osaka Univ, Dept Med Informat, Grad Sch Med, Osaka, Japan
[2] Osaka Univ, Dept Transformat Syst Med Informat, Grad Sch Med, Osaka, Japan
[3] Natl Hosp Org Osaka Natl Hosp, Osaka, Japan
来源
关键词
Diagnostic certainty; radiology report; deep learning;
D O I
10.3233/SHTI231029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A radiology report is prepared for communicating clinical information about observed abnormal structures and clinically important findings with referring clinicians. However, such observations and findings are often accompanied by ambiguous expressions, which can prevent clinicians from accurately interpreting the content of reports. To systematically assess the degree of diagnostic certainty for each observation and finding in a report, we defined an ordinal scale comprising five classes: definite, likely, may represent, unlikely, and denial. Furthermore, we applied a deep learning classification model to determine its applicability to in-house radiology reports. We trained and evaluated the model using 540 in-house chest computed tomography reports. The deep learning model achieved a micro F1-score of 97.61%, which indicated that our ordinal scale was suitable for measuring the diagnostic certainty of observations and findings in a report.
引用
收藏
页码:569 / 573
页数:5
相关论文
共 50 条
  • [1] Qualifying Certainty in Radiology Reports through Deep Learning?Based Natural Language Processing
    Liu, F.
    Zhou, P.
    Baccei, S. J.
    Masciocchi, M. J.
    Amornsiripanitch, N.
    Kiefe, C., I
    Rosen, M. P.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (10) : 1755 - 1761
  • [2] Epilepsy Radiology Reports Classification Using Deep Learning Networks
    Bayrak, Sengul
    Yucel, Eylem
    Takci, Hidayet
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 3589 - 3607
  • [3] Is terminology used effectively to convey diagnostic certainty in radiology reports?
    Khorasani, R
    Bates, DW
    Teeger, S
    Rothschild, JM
    Adams, DF
    Seltzer, SE
    ACADEMIC RADIOLOGY, 2003, 10 (06) : 685 - 688
  • [4] Deep learning in generating radiology reports: A survey
    Monshi, Maram Mahmoud A.
    Poon, Josiah
    Chung, Vera
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 106
  • [5] Radiologist Preferences, Agreement, and Variability in Phrases Used to Convey Diagnostic Certainty in Radiology Reports
    Shinagare, Atul B.
    Lacson, Ronilda
    Boland, Giles W.
    Wang, Aijia
    Silverman, Stuart G.
    Mayo-Smith, William W.
    Khorasani, Ramin
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (04) : 458 - 464
  • [6] Supervised machine learning and active learning in classification of radiology reports
    Nguyen, Dung H. M.
    Patrick, Jon D.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (05) : 893 - 901
  • [7] Development of a Deep Learning Natural Language Processing Model for Classification of Lung Cancer Radiology Reports
    Mithun, S.
    Jha, A. K.
    Sherkhane, U. B.
    Jaiswar, V.
    Nautiyal, A.
    Purandare, N. C.
    Rangarajan, V.
    Dekker, A.
    Wee, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S330 - S330
  • [8] A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion
    Khosravi, Pegah
    Lysandrou, Maria
    Eljalby, Mahmoud
    Li, Qianzi
    Kazemi, Ehsan
    Zisimopoulos, Pantelis
    Sigaras, Alexandros
    Brendel, Matthew
    Barnes, Josue
    Ricketts, Camir
    Meleshko, Dmitry
    Yat, Andy
    McClure, Timothy D.
    Robinson, Brian D.
    Sboner, Andrea
    Elemento, Olivier
    Chughtai, Bilal
    Hajirasouliha, Iman
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (02) : 462 - 471
  • [9] Multilingual RECIST classification of radiology reports using supervised learning
    Mottin, Luc
    Goldman, Jean-Philippe
    Jaggli, Christoph
    Achermann, Rita
    Gobeill, Julien
    Knafou, Julien
    Ehrsam, Julien
    Wicky, Alexandre
    Gerard, Camille L.
    Schwenk, Tanja
    Charrier, Melinda
    Tsantoulis, Petros
    Lovis, Christian
    Leichtle, Alexander
    Kiessling, Michael K.
    Michielin, Olivier
    Pradervand, Sylvain
    Foufi, Vasiliki
    Ruch, Patrick
    FRONTIERS IN DIGITAL HEALTH, 2023, 5
  • [10] A Comparison of Transfer learning with BERT and ClinicalBERT for Classification of Radiology Reports
    Mithun, S.
    Jha, A. K.
    Sherkhane, U. B.
    Jaiswar, V.
    Purandare, N. C.
    Rangarajan, V.
    Dekker, A.
    Wee, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S242 - S242