On Kemeny's constant and stochastic complement

被引:0
|
作者
Bini, Dario Andrea [1 ]
Durastante, Fabio [1 ]
Kim, Sooyeong [2 ]
Meini, Beatrice [1 ]
机构
[1] Univ Pisa, Math Dept, Largo Bruno Pontecorvo 5, I-56127 Pisa, PI, Italy
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Markov chains; Kemeny's constant; Divide-and-conquer algorithm;
D O I
10.1016/j.laa.2024.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a stochastic matrix P partitioned in four blocks P-ij, i, j = 1, 2, Kemeny's constant kappa(P) is expressed in terms of Kemeny's constants of the stochastic complements P-1 = P(1)1+ P-12(I-P-22)-1P(21), and P-2 = P-22+P-21(I-P-11)-1P(12). Specific cases concerning periodic Markov chains and Kronecker products of stochastic matrices are investigated. Bounds to Kemeny's constant of perturbed matrices are given. Relying on these theoretical results, a divide-and-conquer algorithm for the efficient computation of Kemeny's constant of graphs is designed. Numerical experiments performed on real world problems show the high efficiency and reliability of this algorithm. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:137 / 162
页数:26
相关论文
共 50 条
  • [1] WHY IS KEMENY'S CONSTANT A CONSTANT?
    Bini, Dario
    Hunter, Jeffrey J.
    Latouche, Guy
    Meini, Beatrice
    Taylor, Peter
    [J]. JOURNAL OF APPLIED PROBABILITY, 2018, 55 (04) : 1025 - 1036
  • [2] Kemeny's constant for a graph with bridges
    Breen, Jane
    Crisostomi, Emanuele
    Kim, Sooyeong
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 20 - 35
  • [3] Kemeny's constant and the random surfer
    Levene, M
    Loizou, G
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 741 - 745
  • [4] Kemeny's constant for countable Markov chains
    Liu, Yuanyuan
    Lyu, Fangfang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 425 - 440
  • [5] Kemeny's constant and the effective graph resistance
    Wang, Xiangrong
    Dubbeldam, Johan L. A.
    Van Mieghem, Piet
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 535 : 231 - 244
  • [6] Kemeny's constant for nonbacktracking random walks
    Breen, Jane
    Faught, Nolan
    Glover, Cory
    Kempton, Mark
    Knudson, Adam
    Oveson, Alice
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (02) : 343 - 363
  • [7] Directed forests and the constancy of Kemeny's constant
    Kirkland, Steve
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (01) : 81 - 84
  • [8] Kemeny's constant and Wiener index on trees
    Jang, Jihyeug
    Kim, Sooyeong
    Song, Minho
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 230 - 243
  • [9] Directed forests and the constancy of Kemeny’s constant
    Steve Kirkland
    [J]. Journal of Algebraic Combinatorics, 2021, 53 : 81 - 84
  • [10] A STRUCTURED CONDITION NUMBER FOR KEMENY'S CONSTANT
    Breen, Jane
    Kirkland, Steve
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (04) : 1555 - 1578