A generalized strain model for spectral rate-dependent constitutive equation of transversely isotropic electro-viscoelastic solids

被引:0
|
作者
Shariff, M. H. B. M. [1 ]
Bustamante, R. [2 ]
Merodio, J. [3 ]
机构
[1] Sci Khalifa Univ Sci & Technol, Dept Appl Math, Abu Dhabi, U Arab Emirates
[2] Univ Chile, Santiago Ctr, Dept Ingn Mecan, Beauchef 851, Santiago, Chile
[3] Univ Politecn Madrid, Dept Matemat Aplicada TIC, ETS Ingn Sistemas Informat, Madrid 28031, Spain
关键词
Nonlinear electro-viscoelasticity; Transversely isotropic; Generalized strain; Spectral invariants; INVARIANTS; FRAMEWORK;
D O I
10.1016/j.jmps.2024.105838
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We model the constitutive equation for nonlinear electro-viscoelastic transversely isotropic solids with short term memory via a generalized strain method, where the method is a change with respect to the methods that have been done in the last decades regarding mechanics of nonlinear solids. Our generalized strain model uses spectral invariants with a clear physical interpretation and hence they are attractive for use in experiments. The constitutive equation contains single-variable functions, which are easy to deal with when compared to multivariable functions. The effects of viscosity and electric fields are analysed via the boundary value problem results. The efficacy the proposed prototype is scrutinized by comparing our theory with experimental data.
引用
收藏
页数:21
相关论文
共 25 条
  • [1] A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids
    Shariff, M. H. B. M.
    Bustamante, R.
    Merodio, J.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [2] A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids
    M. H. B. M. Shariff
    R. Bustamante
    J. Merodio
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [3] Nonlinear rate-dependent spectral constitutive equation for viscoelastic solids with residual stresses
    M. H. B. M. Shariff
    J. Merodio
    Journal of Engineering Mathematics, 2021, 129
  • [4] Nonlinear rate-dependent spectral constitutive equation for viscoelastic solids with residual stresses
    Shariff, M. H. B. M.
    Merodio, J.
    JOURNAL OF ENGINEERING MATHEMATICS, 2021, 129 (01)
  • [5] Generalized rate-dependent inelastic constitutive equation (the extension of elastoplasticity)
    Hashiguchi, Koichi
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2003, 69 (02): : 280 - 287
  • [6] A thermodynamically consistent viscoelastic with rate-dependent damage constitutive model
    Jia, Huilin
    Yuan, Zifeng
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 269
  • [7] Folding stress analysis of a sandwich plate based on transversely isotropic and rate-dependent constitutive relationship of adhesive
    Li, Xiangzhe
    Li, Wenyu
    Xia, Ri
    Huo, Mingchen
    Xu, Jinquan
    JOURNAL OF ADHESION, 2022, 98 (15): : 2366 - 2395
  • [8] GENERALIZED STRAIN RATE DEPENDENT CONSTITUTIVE EQUATION FOR ANISOTROPIC METALS
    LEE, D
    ZAVERL, F
    ACTA METALLURGICA, 1978, 26 (11): : 1771 - 1780
  • [9] A Nonlinear Viscoelastic Constitutive Model for Solid Propellant with Rate-Dependent Cumulative Damage
    Chen, Shenghao
    Wang, Chunguang
    Zhang, Kaining
    Lu, Xuan
    Li, Qun
    MATERIALS, 2022, 15 (17)
  • [10] A Strain Rate-Dependent Constitutive Model for Gottingen Minipig Cerebral Arteries
    Pearson, Noah
    Boiczyk, Gregory M.
    Kote, Vivek Bhaskar
    Sundaramurthy, Aravind
    Subramaniam, Dhananjay Radhakrishnan
    Rubio, Jose E.
    Unnikrishnan, Ginu
    Reifman, Jaques
    Monson, Kenneth
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (08):