A Convolutional Neural Network-Based Quantization Method for Block Compressed Sensing of Images

被引:0
|
作者
Gong, Jiulu [1 ]
Chen, Qunlin [2 ]
Zhu, Wei [3 ]
Wang, Zepeng [1 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
[2] North Automat Control Technol Inst, Taiyuan 030006, Peoples R China
[3] Beijing Inst Astronaut Syst Engn, Beijing 100076, Peoples R China
关键词
compressed sensing; quantization; convolutional neural network; image compression;
D O I
10.3390/e26060468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Block compressed sensing (BCS) is a promising method for resource-constrained image/video coding applications. However, the quantization of BCS measurements has posed a challenge, leading to significant quantization errors and encoding redundancy. In this paper, we propose a quantization method for BCS measurements using convolutional neural networks (CNN). The quantization process maps measurements to quantized data that follow a uniform distribution based on the measurements' distribution, which aims to maximize the amount of information carried by the quantized data. The dequantization process restores the quantized data to data that conform to the measurements' distribution. The restored data are then modified by the correlation information of the measurements drawn from the quantized data, with the goal of minimizing the quantization errors. The proposed method uses CNNs to construct quantization and dequantization processes, and the networks are trained jointly. The distribution parameters of each block are used as side information, which is quantized with 1 bit by the same method. Extensive experiments on four public datasets showed that, compared with uniform quantization and entropy coding, the proposed method can improve the PSNR by an average of 0.48 dB without using entropy coding when the compression bit rate is 0.1 bpp.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Convolutional Neural Network-Based Method for Agriculture Plot Segmentation in Remote Sensing Images
    Qi, Liang
    Zuo, Danfeng
    Wang, Yirong
    Tao, Ye
    Tang, Runkang
    Shi, Jiayu
    Gong, Jiajun
    Li, Bangyu
    REMOTE SENSING, 2024, 16 (02)
  • [2] Convolutional neural network-based classification system design with compressed wireless sensor network images
    Ahn, Jungmo
    Park, JaeYeon
    Park, Donghwan
    Paek, Jeongyeup
    Ko, JeongGil
    PLOS ONE, 2018, 13 (05):
  • [3] A deep inverse convolutional neural network-based semantic classification method for land cover remote sensing images
    Wang, Ming
    She, Anqi
    Chang, Hao
    Cheng, Feifei
    Yang, Heming
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [4] Convolutional Neural Network-Based Remote Sensing Images Segmentation Method for Extracting Winter Wheat Spatial Distribution
    Zhang, Chengming
    Gao, Shuai
    Yang, Xiaoxia
    Li, Feng
    Yue, Maorui
    Han, Yingjuan
    Zhao, Hui
    Zhang, Ya'nan
    Fan, Keqi
    APPLIED SCIENCES-BASEL, 2018, 8 (10):
  • [5] Compressed Sensing Image Reconstruction Based on Convolutional Neural Network
    Yuhong Liu
    Shuying Liu
    Cuiran Li
    Danfeng Yang
    International Journal of Computational Intelligence Systems, 2019, 12 : 873 - 880
  • [6] Compressed Sensing Image Reconstruction Based on Convolutional Neural Network
    Liu, Yuhong
    Liu, Shuying
    Li, Cuiran
    Yang, Danfeng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 873 - 880
  • [7] Convolutional neural network-based post-filtering for compressed YUV420 images and video
    Cui, Kai
    Koyuncu, Ahmet Burakhan
    Boev, Atanas
    Alshina, Elena
    Steinbach, Eckehard
    2021 PICTURE CODING SYMPOSIUM (PCS), 2021, : 96 - 100
  • [8] Convolutional neural network-based registration for mosaicing of microscopic images
    Zhang, Junhua
    Huang, Yihua
    Song, Yingchao
    Jiang, Yi
    Zhang, Lun
    Zhang, Yufeng
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [9] Hardware Implementation of Convolutional Neural Network-Based Remote Sensing Image Classification Method
    Chen, Lei
    Wei, Xin
    Liu, Wenchao
    Chen, He
    Chen, Liang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 140 - 148
  • [10] Computational ghost imaging with compressed sensing based on a convolutional neural network
    张浩
    段德洋
    Chinese Optics Letters, 2021, 19 (10) : 19 - 22