On Fourier coefficients associated to automorphic L-functions over a binary quadratic form and its applications

被引:0
|
作者
Hua, Guodong [1 ,2 ]
机构
[1] Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Peoples R China
[2] Weinan Normal Univ, Res Inst Qindong Math, Weinan 714099, Peoples R China
来源
RAMANUJAN JOURNAL | 2024年 / 65卷 / 02期
关键词
Hecke eigenvalues; Automorphic L-functions; Asymptotic behavior; Sign changes; PLANCHEREL MEASURES; EULER PRODUCTS; CUSP FORMS; CLASSIFICATION; FUNCTORIALITY; MOMENT; SERIES; SUM;
D O I
10.1007/s11139-024-00916-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f and g be two distinct normalized primitive Hecke cusp forms of even integral weights k(1) and k(2) for the full modular group Gamma = SL(2,Z). Denote by lambda(f circle times f circle times f circle times g)(n) and lambda(sym2f circle times f circle times g)(n) the nth normalized coefficients of the automorphic L-functions L(f circle times f circle times f circle times g, s)and L(sym(2 )f circle times f circle times g, s), respectively. In this paper, we are interested in the average behavior of the coefficients lambda(f circle times f circle times f circle times g)(n) and lambda(sym2f circle times f circle times g)(n) on a primitive integral binary quadratic form with negative discriminant whose class number is 1, and we also provide the asymptotic formulae of these summatory functions. As an application, we also consider the number of sign changes of the sequences {lambda(f circle times f circle times f circle times g)(n)} n >= 1 and {lambda(sym2f circle times f circle times g)(n)} n >= 1 on the same binary quadratic form in short intervals.
引用
收藏
页码:759 / 781
页数:23
相关论文
共 50 条