Statistically order compact operators on Riesz spaces

被引:0
|
作者
Aydin, Abdullah [1 ]
机构
[1] Mus Alparslan Univ, Dept Math, Mus, Turkiye
来源
关键词
compact operator; Riesz space; statistical order convergence; statistical order compact operator; statistical M-weakly compact operator; CONVERGENCE;
D O I
10.15672/hujms.1223922
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research paper introduces and establishes the concept of compact operators in the context of Riesz spaces, specifically considering statistical order convergence. We define statistical order compact operators as operators that map statistical order bounded sequences to sequences with statistical order convergent subsequences. Additionally, we define statistical M-weakly compact operators. By utilizing these non-topological concepts, we derive some new results pertaining to these operators.
引用
收藏
页码:628 / 636
页数:9
相关论文
共 50 条
  • [1] Statistically order continuous operators on Riesz spaces
    Aydin, Abdullah
    Gorokhova, Svetlana
    Selen, Ramazan
    Solak, Sumeyra
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 17 (01) : 1 - 9
  • [2] Unbounded order continuous operators on Riesz spaces
    Bahramnezhad, Akbar
    Azar, Kazem Haghnejad
    POSITIVITY, 2018, 22 (03) : 837 - 843
  • [3] Unbounded order continuous operators on Riesz spaces
    Akbar Bahramnezhad
    Kazem Haghnejad Azar
    Positivity, 2018, 22 : 837 - 843
  • [4] Statistical Order Convergence and Statistically Relatively Uniform Convergence in Riesz Spaces
    Xue, Xuemei
    Tao, Jian
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [5] The lateral order on Riesz spaces and orthogonally additive operators
    Volodymyr Mykhaylyuk
    Marat Pliev
    Mikhail Popov
    Positivity, 2021, 25 : 291 - 327
  • [6] The lateral order on Riesz spaces and orthogonally additive operators
    Mykhaylyuk, Volodymyr
    Pliev, Marat
    Popov, Mikhail
    POSITIVITY, 2021, 25 (02) : 291 - 327
  • [7] Correction to: Unbounded order continuous operators on Riesz spaces
    Akbar Bahramnezhad
    Kazem Haghnejad Azar
    Positivity, 2019, 23 : 759 - 760
  • [8] Riesz spaces of order bounded disjointness preserving operators
    Ben Amor, Fethi
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (04): : 607 - 622
  • [9] Compact Operators on Riesz Dfference Sequence Space of Fractional Order
    Yaying, Taja
    Cakalli, Huseyin
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [10] CHARACTERIZATION OF REGULAR RIESZ SPACES USING ORU-COMPACT OPERATORS
    VUZA, DT
    ARCHIV DER MATHEMATIK, 1988, 51 (06) : 547 - 560