Elucidating Synergies of Single-Atom Catalysts in a Model Thin Film Photoelectrocatalyst to Maximize Hydrogen Evolution Reaction

被引:0
|
作者
Zhao, Zichu [1 ,2 ]
Law, Cheryl Suwen [1 ,2 ]
Zhao, Yanzhang [1 ]
Jaimez, Jairo Alberto Baron [1 ,2 ]
Talebian-Kiakalaieh, Amin [1 ]
Li, Haobo [1 ]
Ran, Jingrun [1 ]
Jiao, Yan [1 ]
Abell, Andrew D. [2 ,3 ]
Santos, Abel [1 ,2 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Inst Photon & Adv Sensing IPAS, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Dept Chem, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
hydrogen evolution reactions; materials design; semiconductor thin films; single atom photoelectrocatalysts; HETEROGENEOUS CATALYSIS; TIO2; NANOTUBES; ANODIZATION; FABRICATION; PLATINUM; NANOPARTICLES; MORPHOLOGY; STABILITY; TITANIUM; ANATASE;
D O I
10.1002/advs.202407598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Realization of the full potential of single-atom photoelectrocatalysts in sustainable energy generation requires careful consideration of the design of the host material. Here, a comprehensive methodology for the rational design of photoelectrocatalysts using anodic titanium dioxide (TiO2) nanofilm as a model platform is presented. The properties of these nanofilms are precisely engineered to elucidate synergies across structural, chemical, optoelectronic, and electrochemical properties to maximize the efficiency of the hydrogen evolution reaction (HER). These findings clearly demonstrate that thicker TiO2 nanofilms in anatase phase with pits on the surface can accommodate single-atom platinum catalysts in an optimal configuration to increase HER performance. It is also evident that the electrolyte temperature can further enhance HER output through thermochemical effect. A judicious design incorporating all these factors into one system gives rise to a ten-fold HER enhancement. However, the reusability of the host photoelectrocatalyst is limited by the leaching of the Pt atom, worsening HER. Density-functional theory calculations have provided insights into the mechanism underlying the experimental observations in terms of moderate hydrogen adsorption and enhanced gas generation. This improved understanding of the critical factors determining HER performance in a model photoelectrocatalyst paves the way for future advances in scalable and translatable photoelectrocatalyst technologies. Creating a rationale toward the design of high-performing single-atom photoelectrocatalysts. Synergistic effects combining thickness, morphology, crystallographic phase, quantity of single-atom catalyst, and electrolyte temperature are harnessed as a design approach to maximize hydrogen evolution reaction efficiency. A mechanistic framework to describe these phenomena is also developed. image
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Single-Atom Catalysts for the Hydrogen Evolution Reaction
    Liu, Haoxuan
    Peng, Xianyun
    Liu, Xijun
    CHEMELECTROCHEM, 2018, 5 (20): : 2963 - 2974
  • [2] Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction
    Zhu, Jingting
    Cai, Lejuan
    Tu, Yudi
    Zhang, Lifu
    Zhang, Wenjing
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (29) : 15370 - 15389
  • [3] Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction
    Abdelghafar, Fatma
    Xu, Xiaomin
    Jiang, San Ping
    Shao, Zongping
    MATERIALS REPORTS: ENERGY, 2022, 2 (03):
  • [4] Rational design of an efficient descriptor for single-atom catalysts in the hydrogen evolution reaction
    Huang, Hai-Cai
    Zhao, Yang
    Wang, Jing
    Li, Jun
    Chen, Jing
    Fu, Qiang
    Bu, Yu-Xiang
    Cheng, Shi-Bo
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (18) : 9202 - 9208
  • [5] Role of Dihydride and Dihydrogen Complexes in Hydrogen Evolution Reaction on Single-Atom Catalysts
    Di Liberto, Giovanni
    Cipriano, Luis A.
    Pacchioni, Gianfranco
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (48) : 20431 - 20441
  • [6] Single-atom catalysts for photocatalytic hydrogen evolution: A review
    Sun, Lilai
    Han, Lu
    Huang, Juntong
    Luo, Xudong
    Li, Xibao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (40) : 17583 - 17599
  • [7] Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives
    Pu, Zonghua
    Amiinu, Ibrahim Saana
    Cheng, Ruilin
    Wang, Pengyan
    Zhang, Chengtian
    Mu, Shichun
    Zhao, Weiyue
    Su, Fengmei
    Zhang, Gaixia
    Liao, Shijun
    Sun, Shuhui
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [8] Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives
    Zonghua Pu
    Ibrahim Saana Amiinu
    Ruilin Cheng
    Pengyan Wang
    Chengtian Zhang
    Shichun Mu
    Weiyue Zhao
    Fengmei Su
    Gaixia Zhang
    Shijun Liao
    Shuhui Sun
    Nano-Micro Letters, 2020, 12 (02) : 77 - 105
  • [9] Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study
    He, Bingling
    Shen, Jiansheng
    Wang, Bin
    Lu, Zhansheng
    Ma, Dongwei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (29) : 15685 - 15692
  • [10] Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives
    Zonghua Pu
    Ibrahim Saana Amiinu
    Ruilin Cheng
    Pengyan Wang
    Chengtian Zhang
    Shichun Mu
    Weiyue Zhao
    Fengmei Su
    Gaixia Zhang
    Shijun Liao
    Shuhui Sun
    Nano-Micro Letters, 2020, 12