Noise-robust modal parameter identification and damage assessment for aero-structures

被引:0
|
作者
Dessena, Gabriele [1 ]
Civera, Marco [2 ]
Pontillo, Alessandro [3 ]
Ignatyev, Dmitry I. [4 ]
Whidborne, James F. [4 ]
Fragonara, Luca Zanotti [4 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield, England
[2] Politecn Torino, Dept Aerosp Engn, Leganes, Spain
[3] Politecn Torino, Dept Struct Geotech & Bldg Engn, Turin, Italy
[4] Univ West England, Sch Engn, Bristol, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Modal analysis; Ground vibration testing; Modal parameters; Loewner framework; Fast relaxed vector fitting; Frequency domain; Noise; Damage detection; Structural health monitoring; Aeronautical structures; Aerospace structures; High aspect ratio wings; MULTIPORT SYSTEMS;
D O I
10.1108/AEAT-06-2024-0178
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
PurposeGround vibration testing is critical for aircraft design and certification. Fast relaxed vector fitting (FRVF) and Loewner framework (LF), recently extended to modal parameter extraction in mechanical systems to address the computational challenges of time and frequency domain techniques, are applied for damage detection on aeronautically relevant structures.Design/methodology/approachFRVF and LF are applied to numerical datasets to assess noise robustness and performance for damage detection. Computational efficiency is also evaluated. In addition, they are applied to a novel damage detection benchmark of a high aspect ratio wing, comparing their performance with the state-of-the-art method N4SID.FindingsFRVF and LF detect structural changes effectively; LF exhibits better noise robustness, while FRVF is more computationally efficient.Practical implicationsLF is recommended for noisy measurements.Originality/valueTo the best of the authors' knowledge, this is the first study in which the LF and FRVF are applied for the extraction of the modal parameters in aeronautically relevant structures. In addition, a novel damage detection benchmark of a high-aspect-ratio wing is introduced.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [1] Noise-robust parameter estimation of linear systems
    Emara-Shabaik, HE
    JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (05) : 727 - 740
  • [2] Noise-robust Deep Cross-Modal Hashing
    Wang, Runmin
    Yu, Guoxian
    Zhang, Hong
    Guo, Maozu
    Cui, Lizhen
    Zhang, Xiangliang
    INFORMATION SCIENCES, 2021, 581 : 136 - 154
  • [4] Local damage identification and nowcasting of mooring system using a noise-robust ConvMamba architecture
    Mao, Yixuan
    Duan, Menglan
    Men, Hongyuan
    Zheng, Miaozi
    Mechanical Systems and Signal Processing, 2025, 224
  • [5] RGBT Tracking via Noise-Robust Cross-Modal Ranking
    Li, Chenglong
    Xiang, Zhiqiang
    Tang, Jin
    Luo, Bin
    Wang, Futian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 5019 - 5031
  • [6] Modal parameter identification of controlled structures
    Kasai, T
    Komatsu, K
    Sano, M
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1997, 20 (01) : 184 - 186
  • [7] Improved model parameter compensation methods for noise-robust speech recognition
    Chang, YH
    Chung, YJ
    Park, SU
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 561 - 564
  • [8] A noise-robust damage indicator for characterizing singularity of mode shapes for incipient delamination identification in CFRP laminates
    Xu, Wei
    Fang, Hongyuan
    Cao, Maosen
    Zhou, Limin
    Wang, Quan
    Ostachowicz, Wieslaw
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 121 : 183 - 200
  • [9] Cross-Lingual Cross-Modal Retrieval with Noise-Robust Learning
    Wang, Yabing
    Dong, Jianfeng
    Liang, Tianxiang
    Zhang, Minsong
    Cai, Rui
    Wang, Xun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
  • [10] Noise-Robust Semi-supervised Multi-modal Machine Translation
    Li, Lin
    Hu, Kaixi
    Tayir, Turghun
    Liu, Jianquan
    Lee, Kong Aik
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 155 - 168