Stealthy and hyperuniform isotropic photonic band gap structure in 3D

被引:0
|
作者
Siedentop, Lukas [1 ]
Lui, Gianluc [2 ]
Maret, Georg [1 ]
Chaikin, Paul M. [3 ]
Steinhardt, Paul J. [4 ]
Torquato, Salvatore [4 ,5 ,6 ,7 ]
Keim, Peter [8 ,9 ,10 ]
Florescu, Marian
机构
[1] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[2] Univ Surrey, Adv Technol Inst, Sch Math & Phys, Guildford GU2 7XH, England
[3] NYU, Dept Phys, New York, NY 10003 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[6] Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA
[7] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[8] Max Planck Inst Dynam & Selforg, D-37077 Gottingen, Germany
[9] Univ Gottingen, Inst Dynam Complex Syst, D-37077 Gottingen, Germany
[10] Heinrich Heine Univ Dusseldorf, Inst Expt Phys Condensed Matter, D-40225 Dusseldorf, Germany
来源
PNAS NEXUS | 2024年 / 3卷 / 09期
基金
英国工程与自然科学研究理事会;
关键词
stealthy; hyperuniform; isotropic photonic band gap; CRYSTALS;
D O I
10.1093/pnasnexus/pgae383
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of isotropic photonic band gaps. Here, we report the first ever 3D isotropic photonic band gap for an optimized disordered stealthy hyperuniform structure for microwaves. The transmission spectra are directly compared to a diamond pattern and an amorphous structure with similar node density. The band structure is measured experimentally for all three microwave structures, manufactured by 3D laser printing for metamaterials with refractive index up to n=2.1. Results agree well with finite-difference-time-domain numerical investigations and a priori calculations of the band gap for the hyperuniform structure: the diamond structure shows gaps but being anisotropic as expected, the stealthy hyperuniform pattern shows an isotropic gap of very similar magnitude, while the amorphous structure does not show a gap at all. Since they are more easily manufactured, prototyping centimeter scaled microwave structures may help optimizing structures in the technologically very interesting region of infrared.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Photonic amorphous diamond structure with a 3D photonic band gap
    Edagawa, Keiichi
    Kanoko, Satoshi
    Notomi, Masaya
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [2] Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast
    Man, Weining
    Florescu, Marian
    Matsuyama, Kazue
    Yadak, Polin
    Nahal, Geev
    Hashemizad, Seyed
    Williamson, Eric
    Steinhardt, Paul
    Torquato, Salvatore
    Chaikin, Paul
    OPTICS EXPRESS, 2013, 21 (17): : 19972 - 19981
  • [3] Experimental evidence of isotropic transparency and complete band gap formation for ultrasound propagation in stealthy hyperuniform media
    Alhaitz, Ludovic
    Conoir, Jean-Marc
    Valier-Brasier, Tony
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [4] An optical probe of a 3D photonic band gap
    Adhikary, Manashee
    Uppu, Ravitej
    Harteveld, Cornelis A. M.
    Vos, Willem L.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [5] Experimental probe of a complete 3D photonic band gap
    Adhikary, Manashee
    Uppu, Ravitej
    Harteveld, Cornelis A. M.
    Grishina, Diana A.
    Vos, Willem L.
    OPTICS EXPRESS, 2020, 28 (03) : 2683 - 2698
  • [6] Hyperuniform disordered photonic band gap devices for silicon photonics
    Milosevic, Milan M.
    Florescu, Marian
    Man, Weining
    Nahal, Geev
    Tsitrin, Sam
    Amoah, Timothy
    Steinhardt, Paul J.
    Torquato, Salvatore
    Chaikin, Paul M.
    Mullen, Ruth Ann
    2014 IEEE 11TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2014,
  • [7] Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids
    Man, Weining
    Florescu, Marian
    Williamson, Eric Paul
    He, Yingquan
    Hashemizad, Seyed Reza
    Leung, Brian Y. C.
    Liner, Devin Robert
    Torquato, Salvatore
    Chaikin, Paul M.
    Steinhardt, Paul J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (40) : 15886 - 15891
  • [8] Hyperuniform disordered photonic band gap silicon devices for optical interconnects
    Milosevic, Milan M.
    Florescu, Marian
    Man, Weining
    Nahal, Geev
    Tsitrin, Sam
    Amoah, Timothy
    Steinhardt, Paul J.
    Torquato, Salvatore
    Chaikin, Paul M.
    Mullen, Ruth Ann
    2014 IEEE OPTICAL INTERCONNECTS CONFERENCE, 2014, : 1 - 2
  • [9] Optical resonances in a 3D superlattice of photonic band gap cavities
    Adhikary, Manashee
    Uppu, Ravitej
    Hack, Sjoerd A.
    Harteveld, Cornelis A. M.
    Vos, Willem L.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [10] Effect of dye on the band gap of 3D polystyrene photonic crystals
    Alee, K. S.
    Brundavanam, Maruthi M.
    Bhaktha, S. N. B.
    Chiappini, A.
    Ferrari, M.
    Rao, D. Narayana
    OPTICAL COMPONENTS AND MATERIALS VI, 2009, 7212