Multi-omic analysis identifies metabolic biomarkers for the early detection of breast cancer and therapeutic response prediction

被引:0
|
作者
Song, Huajie [1 ]
Tang, Xiaowei [1 ]
Liu, Miao [2 ]
Wang, Guangxi [1 ]
Yuan, Yuyao [1 ]
Pang, Ruifang [3 ]
Wang, Chenyi [4 ]
Zhou, Juntuo [1 ]
Yang, Yang [2 ]
Zhang, Mengmeng [2 ]
Jin, Yan [1 ]
Jiang, Kewei [4 ]
Wang, Shu [2 ]
Yin, Yuxin [1 ,3 ]
机构
[1] Peking Univ, Inst Syst Biomed, Peking Tsinghua Ctr Life Sci, Sch Basic Med Sci,Hlth Sci Ctr,Dept Pathol, Beijing 100191, Peoples R China
[2] Peking Univ Peoples Hosp, Breast Ctr, Beijing 100044, Peoples R China
[3] Peking Univ, Shenzhen Hosp, Inst Precis Med, Shenzhen 518036, Peoples R China
[4] Peking Univ Peoples Hosp, Dept Gastroenterol Surg, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
PLASMA SAMPLE PREPARATION; SINGLE-CELL; PROFILES; ATLAS;
D O I
10.1016/j.isci.2024.110682
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reliable blood-based tests for identifying early-stage breast cancer remain elusive. Employing single-cell transcriptomic sequencing analysis, we illustrate a close correlation between nucleotide metabolism in the breast cancer and activation of regulatory T cells (Tregs) in the tumor microenvironment, which shows distinctions between subtypes of patients with triple-negative breast cancer (TNBC) and non-TNBC, and is likely to impact cancer prognosis through the A2AR-Treg pathway. Combining machine learning with absolute quantitative metabolomics, we have established an effective approach to the early detection of breast cancer, utilizing a four-metabolite panel including inosine and uridine. This metabolomics study, involving 1111 participants, demonstrates high accuracy across the training, test, and independent validation cohorts. Inosine and uridine prove predictive of the response to neoadjuvant chemotherapy (NAC) in patients with TNBC. This study deepens our understanding of nucleotide metabolism in breast cancer development and introduces a promising non-invasive method for early breast cancer detection and predicting NAC response in patients with TNBC.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers
    Anita Sathyanarayanan
    Hamzeh M. Tanha
    Divya Mehta
    Dale R. Nyholt
    [J]. Communications Biology, 5
  • [2] Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers
    Sathyanarayanan, Anita
    Tanha, Hamzeh M.
    Mehta, Divya
    Nyholt, Dale R.
    [J]. COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [3] Predicting response to treatment in early breast cancer using dynamic integrative multi-omic profiling
    Sammut, Stephen-John
    Crispin-Ortuzar, Mireia
    Chin, Suet-Feung
    Provenzano, Elena
    Cope, Wei
    Dariush, Ali
    Dawson, Sarah-Jane
    Pharoah, Paul D.
    Markowetz, Florian
    Rueda, Oscar M.
    Earl, Helena M.
    Caldas, Carlos
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [4] Multi-omic machine learning predictor of breast cancer therapy response
    Sammut, Stephen-John
    Crispin-Ortuzar, Mireia
    Chin, Suet-Feung
    Provenzano, Elena
    Bardwell, Helen A.
    Ma, Wenxin
    Cope, Wei
    Dariush, Ali
    Dawson, Sarah-Jane
    Abraham, Jean E.
    Dunn, Janet
    Hiller, Louise
    Thomas, Jeremy
    Cameron, David A.
    Bartlett, John M. S.
    Hayward, Larry
    Pharoah, Paul D.
    Markowetz, Florian
    Rueda, Oscar M.
    Earl, Helena M.
    Caldas, Carlos
    [J]. NATURE, 2022, 601 (7894) : 623 - +
  • [5] Multi-omic machine learning predictor of breast cancer therapy response
    Stephen-John Sammut
    Mireia Crispin-Ortuzar
    Suet-Feung Chin
    Elena Provenzano
    Helen A. Bardwell
    Wenxin Ma
    Wei Cope
    Ali Dariush
    Sarah-Jane Dawson
    Jean E. Abraham
    Janet Dunn
    Louise Hiller
    Jeremy Thomas
    David A. Cameron
    John M. S. Bartlett
    Larry Hayward
    Paul D. Pharoah
    Florian Markowetz
    Oscar M. Rueda
    Helena M. Earl
    Carlos Caldas
    [J]. Nature, 2022, 601 : 623 - 629
  • [6] Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities
    Tanaka, Yosuke
    Chiwaki, Fumiko
    Kojima, Shinya
    Kawazu, Masahito
    Komatsu, Masayuki
    Ueno, Toshihide
    Inoue, Satoshi
    Sekine, Shigeki
    Matsusaki, Keisuke
    Matsushita, Hiromichi
    Boku, Narikazu
    Kanai, Yae
    Yatabe, Yasushi
    Sasaki, Hiroki
    Mano, Hiroyuki
    [J]. NATURE CANCER, 2021, 2 (09) : 962 - +
  • [7] Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities
    Yosuke Tanaka
    Fumiko Chiwaki
    Shinya Kojima
    Masahito Kawazu
    Masayuki Komatsu
    Toshihide Ueno
    Satoshi Inoue
    Shigeki Sekine
    Keisuke Matsusaki
    Hiromichi Matsushita
    Narikazu Boku
    Yae Kanai
    Yasushi Yatabe
    Hiroki Sasaki
    Hiroyuki Mano
    [J]. Nature Cancer, 2021, 2 : 962 - 977
  • [8] Multi-omic analysis of dysregulated pathways in triple negative breast cancer
    Sajjad, Fatima
    Jalal, Ahmer
    Jalal, Amir
    Gul, Zulekha
    Mubeen, Hira
    Rizvi, Seemal Zahra
    Un-Nisa, Ex Alim
    Asghar, Andleeb
    Butool, Farah
    [J]. ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2024, 20 (04) : 450 - 462
  • [9] Molecular mechanisms of multi-omic regulation in breast cancer
    Ochoa, Soledad
    Hernandez-Lemus, Enrique
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] Breast cancer multi-omic single cell profiling identifies key progressive disease markers
    Russell, Hugh
    Rao, Manisha
    Duclos, Grant
    Aguilar, Rogelio
    Barkas, Nick
    Callahan, Megan
    Chaudhary, Ojasvi
    Gathungu, Peter
    Rands, Chris
    Shankarappa, Varsha
    Stetson, Daniel
    Rotem, Asaf
    Scaltriti, Maurizio
    Dougherty, Brian
    [J]. CANCER RESEARCH, 2024, 84 (06)