A reference learning network for fault diagnosis of rotating machinery under strong noise

被引:0
|
作者
Wang, Yinjun [1 ,2 ]
Zhang, Zhigang [2 ]
Ding, Xiaoxi [3 ]
Du, Yanbin [1 ]
Li, Jian [1 ]
Chen, Peng
机构
[1] Chongqing Technol & Business Univ, Chongqing Key Lab Green Design & Mfg Intelligent E, Chongqing 400067, Peoples R China
[2] China Coal Technol & Engn Grp Corp, State Key Lab Coal Mine Disaster Prevent & Control, Chongqing Res Inst, Chongqing 400039, Peoples R China
[3] Chongqing Univ, State Key Lab Mech Transmiss Adv Equipment, Chongqing 400044, Peoples R China
基金
中国博士后科学基金;
关键词
Fault diagnosis; Membership weight; Reference learning; Strong noise; Variable speed; WORKING-CONDITIONS; INTELLIGENT; ATTENTION; SYSTEM;
D O I
10.1016/j.asoc.2024.112150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The strong noise often masks the fault characteristics of equipment, which reduces the accuracy of fault diagnosis and even leads to the inability of intelligent fault diagnosis algorithms to be applied in industrial environments. This has always been a challenge in the field of mechanical fault diagnosis. As known that equipment failure results from the continuous degradation of the equipment's state, with the failure state evolving from the healthy state. Considering that both healthy signals and fault signals contain similar noise, this paper proposes a Reference Learning Network (RLNet) model. The model aims to enhance the distinguishing features between healthy and faulty samples through reference units, thereby eliminating the influence of noise on feature distribution. Firstly, the impact of variable speed on the model's robustness is mitigated using the computed order tracking method. Then, the difference features between healthy samples and a class of fault samples are extracted through the binary classification reference learning unit (RLU). Next, the extracted differential features are used to train the state classifier. Finally, membership weights are employed to effectively combine the feature recognition results, reducing the influence of fault features from mismatched RLUs. The robustness and superiority of the proposed method were verified by comparing it with five other intelligent fault diagnosis methods on the gear and bearing datasets. RLNet is of great significance for the engineering application of intelligent fault diagnosis methods in industrial noise environments.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Differential Enhanced ConvNet for Rotating Machinery Diagnosis Under Strong Noise
    Wang, Yinjun
    Zhang, Zhigang
    Du, Yanbin
    Chen, Peng
    Ding, Xiaoxi
    Yu, Wennian
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 3026 - 3035
  • [2] Fault diagnosis of rotating machinery based on graph weighted reinforcement networks under small samples and strong noise
    Yu, Xiaoxia
    Tang, Baoping
    Deng, Lei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 186
  • [3] Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis
    Zhang, Zongzhen
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    An, Zenghui
    Jiang, Xingxing
    NEUROCOMPUTING, 2020, 398 : 31 - 44
  • [4] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [5] MPNet: A lightweight fault diagnosis network for rotating machinery
    Liu, Yi
    Chen, Ying
    Li, Xianguo
    Zhou, Xinyi
    Wu, Dongdong
    MEASUREMENT, 2025, 239
  • [6] Application of Deep Learning in Fault Diagnosis of Rotating Machinery
    Jiang, Wanlu
    Wang, Chenyang
    Zou, Jiayun
    Zhang, Shuqing
    PROCESSES, 2021, 9 (06)
  • [7] Rotating Machinery Fault Diagnosis Through a Transformer Convolution Network Subjected to Transfer Learning
    Pei, Xinglong
    Zheng, Xiaoyang
    Wu, Jinliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [8] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [9] Fault diagnosis in rotating machinery
    Lees, A.W.
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 313 - 319
  • [10] Fault diagnosis of rotating machinery
    Edwards, S.
    Lees, A.W.
    Friswell, M.I.
    Shock and Vibration Digest, 1998, 30 (01): : 4 - 13