Connected Feedback Vertex Set on AT-Free Graphs

被引:0
|
作者
Mukherjee, Joydeep [1 ]
Saha, Tamojit [1 ,2 ]
机构
[1] Ramakrishna Mission Vivekananda Educ & Res Inst, Howrah, India
[2] TCG CREST, Inst Adv Intelligence, Kolkata, India
来源
关键词
Graph Algorithm; Approximation Algorithm; AT-free graph; Feedback Vertex Set; Combinatorial Optimization; ALGORITHM;
D O I
10.1007/978-3-031-34347-6_27
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A connected feedback vertex set of a graph is a connected subgraph of the graph whose removal makes the graph cycle free. In this paper, we give an approximation algorithm that computes a connected feedback vertex set of size (1.9091OPT + 6) on 2-connected AT-free graphs with running time O(n(8)m(2)). Also, we give another approximation algorithm that computes a connected feedback vertex set of size (2.9091OPT + 6) on the same graph class with more efficient running time O(min{m(log(n)), n(2)}).
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [1] Feedback vertex set on AT-free graphs
    Kratsch, Dieter
    Mueller, Haiko
    Todinca, Ioan
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) : 1936 - 1947
  • [2] Feedback vertex set and longest induced path on AT-free graphs
    Kratsch, D
    Müller, H
    Todinca, I
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 309 - 321
  • [3] Connected Feedback Vertex Set, in Planar Graphs
    Grigoriev, Alexander
    Sitters, Rene
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 143 - +
  • [4] Feedback Vertex Set in Mixed Graphs
    Bonsma, Paul
    Lokshtanov, Daniel
    [J]. ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 122 - +
  • [5] FEEDBACK VERTEX SET ON PLANAR GRAPHS
    Chen, Hong-Bin
    Fu, Hung-Lin
    Shih, Chie-Huai
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2077 - 2082
  • [6] FEEDBACK VERTEX SET ON COCOMPARABILITY GRAPHS
    COORG, SR
    RANGAN, CP
    [J]. NETWORKS, 1995, 26 (02) : 101 - 111
  • [7] Independent Feedback Vertex Set for P5-Free Graphs
    Bonamy, Marthe
    Dabrowski, Konrad K.
    Feghali, Carl
    Johnson, Matthew
    Paulusma, Daniel
    [J]. ALGORITHMICA, 2019, 81 (04) : 1342 - 1369
  • [8] Classifying subset feedback vertex set for H-free graphs
    Paesani, Giacomo
    Paulusma, Daniel
    Rzazewski, Pawel
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 1003
  • [9] Classifying Subset Feedback Vertex Set for H-Free Graphs
    Paesani, Giacomo
    Paulusma, Daniel
    Rzazewski, Pawel
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 412 - 424
  • [10] The diameter of AT-free graphs
    Ducoffe, Guillaume
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (04) : 594 - 614