A random sequential adsorption model for the irreversible binding of Tenebrio molitor antifreeze protein to ice crystals

被引:0
|
作者
Guo, Tinghe [1 ]
Zhang, Nan [1 ]
Li, Yannan [1 ]
Zhang, Luqiang [1 ]
Wang, Jun [1 ]
Zhang, Lirong [1 ]
Liu, Junjie [1 ]
机构
[1] Inner Mongolia Univ, Sch Phys Sci & Technol, Inner Mongolia Key Lab Ion Beam Bioengn, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMAL HYSTERESIS; STRUCTURAL BASIS; ANNEALING TIME; INHIBITION; MECHANISM; INSECTS;
D O I
10.1063/5.0212953
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A class of proteins known as antifreeze proteins (AFPs) appear in some organisms, allowing them to survive in low-temperature environments. These AFPs irreversibly adsorb to the surfaces of ice crystals and reduce the freezing temperature without significantly affecting the equilibrium melting point. Ice crystal growth is inhibited in the temperature gap between the melting point and the non-equilibrium freezing point, referred to as thermal hysteresis (TH). The irreversible adsorption of AFPs on the surfaces of ice crystals has been questioned because it is not consistent with the concentration dependence of the TH activity obtained from experimental studies. In this study, based on adsorption-inhibition theory, a random sequential adsorption model of AFPs was used to investigate the irreversible adsorption of hyperactive AFPs that have been found in the yellow mealworm beetle Tenebrio molitor (TmAFPs). The occupied fractions covered by TmAFP on ice crystal surfaces were obtained. The time and concentration dependence of the TH activity of TmAFP was analyzed. The theoretical results obtained from this model were consistent with reported experimental data. This work provides ideas and a theoretical basis for understanding the TH activity during the irreversible adsorption of AFPs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hydration Behavior at the Ice-Binding Surface of the Tenebrio molitor Antifreeze Protein
    Midya, Uday Sankar
    Bandyopadhyay, Sanjoy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (18): : 4743 - 4752
  • [2] Identification of the ice-binding face of antifreeze protein from Tenebrio molitor
    Marshall, CB
    Daley, ME
    Graham, LA
    Sykes, BD
    Davies, PL
    FEBS LETTERS, 2002, 529 (2-3): : 261 - 267
  • [3] Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Tenebrio molitor Antifreeze Protein
    Midya, Uday Sankar
    Bandyopadhyay, Sanjoy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (01): : 121 - 132
  • [4] NMR studies of Tenebrio molitor antifreeze protein
    Daley, ME
    Liou, YC
    Jia, ZC
    Davies, PL
    Sykes, BD
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 395A - 396A
  • [5] Tenebrio molitor antifreeze protein gene identification and regulation
    Qin, WS
    Walker, VK
    GENE, 2006, 367 : 142 - 149
  • [6] Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom, CS
    Liu, XY
    Jia, ZC
    BIOPHYSICAL JOURNAL, 2005, 89 (04) : 2618 - 2627
  • [7] Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations
    Ramya, L.
    Ramakrishnan, Vigneshwar
    MOLECULAR INFORMATICS, 2016, 35 (6-7) : 268 - 277
  • [8] Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli
    Yue, Chang-Wu
    Zhang, Yi-Zheng
    MOLECULAR BIOLOGY REPORTS, 2009, 36 (03) : 529 - 536
  • [9] Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli
    Chang-Wu Yue
    Yi-Zheng Zhang
    Molecular Biology Reports, 2009, 36 : 529 - 536
  • [10] COMPOSITION OF A PROTEIN ANTIFREEZE FROM LARVAE OF THE BEETLE, TENEBRIO-MOLITOR
    PATTERSON, JL
    DUMAN, JG
    JOURNAL OF EXPERIMENTAL ZOOLOGY, 1979, 210 (02): : 361 - 367