The 3D organ-on-a-chip model unveils a dual role of GDF-15 in vascular growth

被引:0
|
作者
Sarad, Katarzyna [1 ,2 ]
Dulak, Jozef [1 ]
Jazwa-Kusior, Agnieszka [1 ]
机构
[1] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Dept Med Biotechnol, Gronostajowa Str 7, PL-30387 Krakow, Poland
[2] Jagiellonian Univ, Doctoral Sch Exact & Nat Sci, Krakow, Poland
关键词
Angiogenesis; Adventitia; Fibroblast; GDF-15; Organ-on-a-chip;
D O I
10.1016/j.bbrc.2024.150441
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pathological conditions such as oxidative stress or inflammation may alter the homeostasis of adventitia triggering vascular wall remodeling and abnormal angiogenesis, what can lead to development of atherosclerosis. Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine and metabolic regulator, but its role in angiogenesis is not yet fully defined. Here we utilized an organ-on-a-chip technology to analyze endothelial sprouting in an adventitia-resembling microenvironment. We analyzed angiogenic responses to growth factor gradient across the extracellular matrix-resembling fibrin gel and in cell co-culture in response to GDF-15-treated adventitial fibroblasts. We observed that GDF-15 enhanced the pro-angiogenic effect of vascular endothelial growth factor. On the other hand, GDF-15-treated adventitial fibroblasts decreased endothelial sprouting. GDF15 seems to indirectly affect endothelial cells and, depending on the microenvironment, its effect can be either pro- or anti-angiogenic.
引用
收藏
页数:6
相关论文
共 47 条
  • [1] 3D Immunocompetent Organ-on-a-Chip Models
    Maharjan, Sushila
    Cecen, Berivan
    Zhang, Yu Shrike
    SMALL METHODS, 2020, 4 (09):
  • [2] 3D Bioprinting and its application to organ-on-a-chip
    Park, Ju Young
    Jang, Jinah
    Kang, Hyun-Wook
    MICROELECTRONIC ENGINEERING, 2018, 200 : 1 - 11
  • [3] Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing
    Gold, Karli
    Gaharwar, Akhilesh K.
    Jain, Abhishek
    BIOMATERIALS, 2019, 196 : 2 - 17
  • [4] 3D Organ-on-a-chip: Engineering Organ Model Using Cell-printing Technology
    Lee, Hyung Seok
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019,
  • [5] Review: 3D cell models for organ-on-a-chip applications
    Zuchowska, Agnieszka
    Baranowska, Patrycja
    Flont, Magdalena
    Brzozka, Zbigniew
    Jastrzebska, Elzbieta
    ANALYTICA CHIMICA ACTA, 2024, 1301
  • [6] 3D organ-on-a-chip: The convergence of microphysiological systems and organoids
    Baptista, Leandra S.
    Porrini, Constance
    Kronemberger, Gabriela S.
    Kelly, Daniel J.
    Perrault, Cecile M.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [7] ROLE OF GROWTH-DIFFERENTIATION FACTOR 15 (GDF-15) IN A MOUSE-MODEL OF ATHEROSCLEROSIS
    Bonaterra, G. A.
    Thogersen, J.
    Zuegel, S.
    Bendner, G.
    Vorwald, S.
    Fey, J.
    Traut, U.
    Strelau, J.
    Kinscherf, R.
    ATHEROSCLEROSIS SUPPLEMENTS, 2010, 11 (02) : 96 - 97
  • [8] Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications
    Milton, Laura A.
    Viglione, Matthew S.
    Ong, Louis Jun Ye
    Nordin, Gregory P.
    Toh, Yi-Chin
    LAB ON A CHIP, 2023, 23 (16) : 3537 - 3560
  • [9] 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review
    Carvalho, Violeta
    Goncalves, Ines
    Lage, Teresa
    Rodrigues, Raquel O.
    Minas, Graca
    Teixeira, Senhorinha F. C. F.
    Moita, Ana S.
    Hori, Takeshi
    Kaji, Hirokazu
    Lima, Rui A.
    SENSORS, 2021, 21 (09)
  • [10] Industrializing 3D organ-on-a-chip: the development of a bioreactor for organoid mass production
    Baptista, Leandra Santos
    Porrini, Constance
    Reto, Thalia L.
    Perrault, Cecile M.
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)