Fitness Function Comparison for Unsupervised Feature Selection with Permutational-Based Differential Evolution

被引:1
|
作者
Barradas-Palmeros, Jesus-Arnulfo [1 ]
Mezura-Montes, Efren [1 ]
Acosta-Mesa, Hector-Gabriel [1 ]
Rivera-Lopez, Rafael [2 ]
机构
[1] Univ Veracruz, Artificial Intelligence Res Inst, Xalapa, Veracruz, Mexico
[2] Inst Tecnol Veracruz, Dept Sistemas & Comp, Formando Hogar, Veracruz, Mexico
来源
关键词
Unsupervised learning; feature selection; differential evolution;
D O I
10.1007/978-3-031-33783-3_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparative study of the performance of an unsupervised feature selection method using three evaluation metrics. In the existing literature, various metrics are used to guide the search for a better feature subset and evaluate the resulting data clusterization. Still, there is no well-established path for the unsupervised wrapper-based approach as for the supervised case. This work compares three metrics to guide the search in a permutational-based differential evolution algorithm to feature selection: the Silhouette Coefficient, the Kalinski-Harabasz Index, and the Davies-Bouldin Score. The experimental results indicate that no metric performed better when applying the feature selection process to thirteen datasets. Nevertheless, a clear tendency to select small subsets is observed. Furthermore, in some cases, performing the feature selection decreased the performance compared to the complete dataset.
引用
收藏
页码:58 / 68
页数:11
相关论文
共 50 条
  • [1] A permutational-based Differential Evolution algorithm for feature subset selection
    Rivera-Lopez, Rafael
    Mezura-Montes, Efren
    Canul-Reich, Juana
    Antonio Cruz-Chavez, Marco
    [J]. PATTERN RECOGNITION LETTERS, 2020, 133 : 86 - 93
  • [2] Experimental Study of the Instance Sampling Effect on Feature Subset Selection Using Permutational-Based Differential Evolution
    Barradas-Palmeros, Jesus-Arnulfo
    Rivera-Lopez, Rafael
    Mezura-Montes, Efren
    Acosta-Mesa, Hector-Gabriel
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE. MICAI 2023 INTERNATIONAL WORKSHOPS, 2024, 14502 : 409 - 421
  • [3] Computational Cost Reduction in Multi-Objective Feature Selection Using Permutational-Based Differential Evolution
    Barradas-Palmeros, Jesus-Arnulfo
    Mezura-Montes, Efren
    Rivera-Lopez, Rafael
    Acosta-Mesa, Hector-Gabriel
    Marquez-Grajales, Aldo
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [4] Unsupervised Feature Selection and Clustering Optimization Based on Improved Differential Evolution
    Li, Tao
    Dong, Hongbin
    [J]. IEEE ACCESS, 2019, 7 : 140438 - 140450
  • [5] Feature Selection Using Differential Evolution for Unsupervised Image Clustering
    Gutoski, Matheus
    Ribeiro, Manasses
    Romero Aquino, Nelson Marcelo
    Hattori, Leandro Takeshi
    Lazzaretti, Andre Eugenio
    Lopes, Heitor Silverio
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 376 - 385
  • [6] Unsupervised feature selection using an improved version of Differential Evolution
    Bhadra, Tapas
    Bandyopadhyay, Sanghamitra
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (08) : 4042 - 4053
  • [7] Selection Based on Colony Fitness for Differential Evolution
    Ming, Zi
    Li, Yang
    Peng, Shijie
    Wu, Xuechao
    Guo, Jinyi
    [J]. IEEE ACCESS, 2018, 6 : 78333 - 78341
  • [8] Unsupervised Text Feature Selection Using Memetic Dichotomous Differential Evolution
    Al-Jadir, Ibraheem
    Wong, Kok Wai
    Fung, Chun Che
    Xie, Hong
    [J]. ALGORITHMS, 2020, 13 (06)
  • [9] Differential Evolution based Feature Subset Selection
    Khushaba, Rami N.
    Al-Ani, Ahmed
    Al-Jumaily, Adel
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3674 - 3677
  • [10] UNSUPERVISED FEATURE SELECTION BASED ON FEATURE RELEVANCE
    Zhang, Feng
    Zhao, Ya-Jun
    Chen, Jun-Fen
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 487 - +