Thermal effects on damping determination of perpendicular MRAM devices by spin-torque ferromagnetic resonance

被引:0
|
作者
Richter, H. J. [1 ]
Mihajlovic, G. [1 ]
Chopdekar, R. V. [1 ]
Jung, W. [1 ]
Gibbons, J. [1 ]
Melendez, N. D. [1 ]
Grobis, M. K. [1 ]
Santos, T. S. [1 ]
机构
[1] Western Digital Corp, Western Digital Res Ctr, San Jose, CA 95119 USA
关键词
MAGNETIZATION REVERSAL; TUNNEL-JUNCTIONS; FLUCTUATIONS; DEPENDENCE; NOISE;
D O I
10.1063/5.0231388
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report device-level damping measurements using spin-torque driven ferromagnetic resonance on perpendicular magnetic random-access memory cells. It is shown that thermal agitation enhances the apparent damping for cells smaller than about 55 nm. The effect is fundamental and does not reflect a true damping increase. In addition to the thermal effect, it is still found that device-level damping is higher than film-level damping and increases with decreasing cell size. This is attributed to edge damage caused by device patterning. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spin-torque ferromagnetic resonance measurements of damping in nanomagnets
    Fuchs, G. D.
    Sankey, J. C.
    Pribiag, V. S.
    Qian, L.
    Braganca, P. M.
    Garcia, A. G. F.
    Ryan, E. M.
    Li, Zhi-Pan
    Ozatay, O.
    Ralph, D. C.
    Buhrman, R. A.
    APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [2] Determining spin-torque efficiency in ferromagnetic metals via spin-torque ferromagnetic resonance
    Yang, W. L.
    Wei, J. W.
    Wan, C. H.
    Xing, Y. W.
    Yan, Z. R.
    Wang, X.
    Fang, C.
    Guo, C. Y.
    Yu, G. Q.
    Han, X. F.
    PHYSICAL REVIEW B, 2020, 101 (06)
  • [3] Spin torque in FeRh alloy measured by spin-torque ferromagnetic resonance
    Tanaka, Kensho
    Moriyama, Takahiro
    Usami, Takamasa
    Taniyama, Tomoyasu
    Ono, Teruo
    APPLIED PHYSICS EXPRESS, 2018, 11 (01)
  • [4] Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect
    Liu, Luqiao
    Moriyama, Takahiro
    Ralph, D. C.
    Buhrman, R. A.
    PHYSICAL REVIEW LETTERS, 2011, 106 (03)
  • [5] Spin-Circuit Representation of Spin-Torque Ferromagnetic Resonance
    Roy, Kuntal
    IEEE MAGNETICS LETTERS, 2021, 12
  • [6] Quantifying spin-torque efficiency and magnetoresistance coefficient by microwave photoresistance in spin-torque ferromagnetic resonance
    Zhan, Xiang
    Duan, Haotian
    Wang, Wenqiang
    Yan, Chunjie
    Chen, Lina
    Wang, Haozhe
    Li, Zishuang
    Liu, Ronghua
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (12)
  • [7] Characterization of Spin-Orbit Torque Efficiency in Magnetic Heterostructures with Perpendicular Magnetic Anisotropy via Spin-Torque Ferromagnetic Resonance
    Wei, Jinwu
    He, Congli
    Wang, Xiao
    Xu, Hongjun
    Liu, Yizhou
    Guang, Yao
    Wan, Caihua
    Feng, Jiafeng
    Yu, Guoqiang
    Han, Xiufeng
    PHYSICAL REVIEW APPLIED, 2020, 13 (03):
  • [8] Spin-torque driven ferromagnetic resonance in a nonlinear regime
    Chen, W.
    de Loubens, G.
    Beaujour, J. -M. L.
    Sun, J. Z.
    Kent, A. D.
    APPLIED PHYSICS LETTERS, 2009, 95 (17)
  • [9] Spin-Pumping-Free Determination of Spin-Orbit Torque Efficiency from Spin-Torque Ferromagnetic Resonance
    Okada, Atsushi
    Takeuchi, Yutaro
    Furuya, Kaito
    Zhang, Chaoliang
    Sato, Hideo
    Fukarni, Shunsuke
    Ohno, Hideo
    PHYSICAL REVIEW APPLIED, 2019, 12 (01)
  • [10] Effect of damping constant on magnetic switching in spin torque driven perpendicular MRAM
    Zhu, Xiaochun
    Zhu, Jian-Gang
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2349 - 2351