INSTANTANEOUS GAP LOSS OF SOBOLEV REGULARITY FOR THE 2D INCOMPRESSIBLE EULER EQUATIONS

被引:3
|
作者
Cordoba, Diego [1 ]
Martinez-zoroa, Luis [2 ]
Ozanski, Wojciech s. [3 ,4 ]
机构
[1] Inst Ciencias Matemat, Madrid, Spain
[2] Univ Basel, Dept Math & Comp Sci, Basel, Switzerland
[3] Florida State Univ, Dept Math, Tallahassee, FL USA
[4] Polish Acad Sci, Inst Math, Warsaw, Poland
基金
欧洲研究理事会;
关键词
WEAK SOLUTIONS;
D O I
10.1215/00127094-2023-0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct solutions of the 2D incompressible Euler equations in R-2 x [0, infinity) ) such that initially the velocity is in the super-critical Sobolev space H-beta for 1 < beta <2, , but is not in H(beta' )for beta(') > 1 + (3-beta)(beta-1)/2-(beta-1)(2) for any t is an element of (0, infinity ) . These solutions are not in the Yudovich class, but they exist globally in time and they are unique in a determined family of classical solutions.
引用
收藏
页码:1931 / 1971
页数:41
相关论文
共 50 条
  • [1] Loss of Regularity for the 2D Euler Equations
    Jeong, In-Jee
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
  • [2] Loss of Regularity for the 2D Euler Equations
    In-Jee Jeong
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [3] Propagation of oscillations to 2D incompressible Euler equations
    Zhang, P
    Wu, GR
    Qiu, QJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05): : 449 - 460
  • [4] Propagation of oscillations to 2D incompressible Euler equations
    张平
    吴广荣
    仇庆久
    Science China Mathematics, 1998, (05) : 449 - 460
  • [5] On 2d Incompressible Euler Equations with Partial Damping
    Tarek Elgindi
    Wenqing Hu
    Vladimír Šverák
    Communications in Mathematical Physics, 2017, 355 : 145 - 159
  • [6] Propagation of oscillations to 2D incompressible Euler equations
    Ping Zhang
    Guangrong Wu
    Qingjiu Qiu
    Science in China Series A: Mathematics, 1998, 41 : 449 - 460
  • [7] On 2d Incompressible Euler Equations with Partial Damping
    Elgindi, Tarek
    Hu, Wenqing
    Sverak, Vladimir
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 145 - 159
  • [9] 2D INCOMPRESSIBLE EULER EQUATIONS: NEW EXPLICIT SOLUTIONS
    Martin, Maria J.
    Tuomela, Jukka
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) : 4547 - 4563
  • [10] Traveling vortex pairs for 2D incompressible Euler equations
    Daomin Cao
    Shanfa Lai
    Weicheng Zhan
    Calculus of Variations and Partial Differential Equations, 2021, 60