Hanging nodes for higher-order Lagrange finite elements

被引:2
|
作者
Jha, Abhinav [1 ]
机构
[1] Rhein Westfal TH Aachen, Appl & Computat Math, Schinkelstr 2, D-52062 Aachen, Germany
来源
关键词
Hanging nodes; Lagrange finite elements;
D O I
10.1016/j.exco.2021.100025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report in this work an extension of hanging nodes theory for Lagrange elements to higher-order elements. Concrete values of the constants that appear in the applications are also provided.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Euler-Lagrange Equations of Networks with Higher-Order Elements
    Biolek, Zdenek
    Biolek, Dalibor
    [J]. RADIOENGINEERING, 2017, 26 (02) : 397 - 405
  • [2] Algebraic multigrid for higher-order finite elements
    Heys, JJ
    Manteuffel, TA
    McCormick, SF
    Olson, LN
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) : 520 - 532
  • [3] Higher-Order Finite Elements for Embedded Simulation
    Longva, Andreas
    Loschner, Fabian
    Kugelstadt, Tassilo
    Fernandez-Fernandez, Jose Antonio
    Bender, Jan
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [4] Higher-order vector finite elements for tetrahedral cells
    Savage, JS
    Peterson, AF
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) : 874 - 879
  • [5] Imposing orthogonality to hierarchic higher-order finite elements
    Solin, Pavel
    Vejchodsky, Tomag
    Zitka, Martin
    Avila, Francisco
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 76 (1-3) : 211 - 217
  • [6] Methods and framework for visualizing higher-order finite elements
    Schroeder, WJ
    Bertel, F
    Malaterre, M
    Thompson, D
    Pebay, PP
    O'Bara, R
    Tendulkar, S
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (04) : 446 - 460
  • [7] HIGHER-ORDER COMPATIBLE TRIANGULAR FINITE-ELEMENTS
    MANSFIELD, L
    [J]. NUMERISCHE MATHEMATIK, 1974, 22 (02) : 89 - 97
  • [8] Higher-order finite elements based on generalized eigenfunctions of the Laplacian
    Solin, Pavel
    Vejchodsky, Tomas
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (10) : 1374 - 1394
  • [9] Crouzeix-Velte decompositions for higher-order finite elements
    Stoyan, G.
    Baran, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 967 - 986
  • [10] Hierarchical layerwise higher-order finite elements for laminated composite
    Kimpara, I
    Kageyama, K
    Suzuki, K
    [J]. DESIGN AND MANUFACTURING OF COMPOSITES, 1998, : 191 - 198