Kropina Metrics with Isotropic Scalar Curvature via Navigation Data

被引:1
|
作者
Ma, Yongling [1 ]
Zhang, Xiaoling [1 ]
Zhang, Mengyuan [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Kropina metrics; scalar curvature; Einstein metrics; ZERMELO NAVIGATION;
D O I
10.3390/math12040505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Through an interesting physical perspective and a certain contraction of the Ricci curvature tensor in Finsler geometry, Akbar-Zadeh introduced the concept of scalar curvature for the Finsler metric. In this paper, we show that the Kropina metric is of isotropic scalar curvature if and only if F is an Einstein metric according to the navigation data. Moreover, we obtain the three-dimensional rigidity theorem for an Einstein-Kropina metric.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Kropina Metrics with Isotropic Scalar Curvature
    Liu, Liulin
    Zhang, Xiaoling
    Zhao, Lili
    [J]. AXIOMS, 2023, 12 (07)
  • [2] On Kropina metrics of scalar flag curvature
    Xia, Qiaoling
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (03) : 393 - 404
  • [3] ON THE SCALAR CURVATURE OF KROPINA METRICS I
    Zhu, Hongmei
    Song, Lumin
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (03): : 579 - 602
  • [4] On m-Kropina Finsler Metrics of Scalar Flag Curvature
    Yang, Guojun
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [5] On m-Kropina Finsler Metrics of Scalar Flag Curvature
    Guojun Yang
    [J]. Results in Mathematics, 2019, 74
  • [6] On Randers metrics of isotropic scalar curvature
    Cheng, Xinyue
    Yuan, Mingao
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 63 - 74
  • [7] ON THE CURVATURE OF INVARIANT KROPINA METRICS
    Moghaddam, H. R. Salimi
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (02): : 136 - 140
  • [8] Kropina metrics and Zermelo navigation on Riemannian manifolds
    Ryozo Yoshikawa
    Sorin V. Sabau
    [J]. Geometriae Dedicata, 2014, 171 : 119 - 148
  • [9] ON CONFORMALLY FLAT POLYNOMIAL (α, β)-METRICS WITH WEAKLY ISOTROPIC SCALAR CURVATURE
    Chen, Bin
    Xia, KaiWen
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 329 - 352
  • [10] ON 4-TH ROOT METRICS OF ISOTROPIC SCALAR CURVATURE
    Tayebi, Akbar
    [J]. MATHEMATICA SLOVACA, 2020, 70 (01) : 161 - 172