On combinatorial properties of Gruenberg-Kegel graphs of finite groups

被引:0
|
作者
Chen, Mingzhu [1 ]
Gorshkov, Ilya [2 ,3 ]
Maslova, Natalia V. [4 ,5 ]
Yang, Nanying [6 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570225, Hainan, Peoples R China
[2] RAS, Sobolev Inst Math SB, Novosibirsk 630090, Russia
[3] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[4] RAS, Krasovskii Inst Math & Mech UB, Ekaterinburg 620108, Russia
[5] Ural Fed Univ, Ekaterinburg 620002, Russia
[6] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 04期
基金
海南省自然科学基金; 俄罗斯科学基金会; 中国国家自然科学基金;
关键词
Finite group; Centralizer of involution; Gruenberg-Kegel graph (prime graph); Strongly regular graph; Complete multipartite graph; PRIME GRAPH; RECOGNITION;
D O I
10.1007/s00605-024-02005-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group, then the spectrum omega(G) is the set of all element orders of G. The prime spectrum pi(G is the set of all primes belonging to omega(G). A simple graph Gamma(G) whose vertex set is pi(G) and in which two distinct vertices r and s are adjacent if and only if rs is an element of omega(G) is called the Gruenberg-Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in Gamma(G) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg-Kegel graph of a finite group.
引用
收藏
页码:711 / 723
页数:13
相关论文
共 50 条
  • [1] FINITE ALMOST SIMPLE GROUPS WHOSE GRUENBERG-KEGEL GRAPHS COINCIDE WITH GRUENBERG-KEGEL GRAPHS OF SOLVABLE GROUPS
    Gorshkov, I. B.
    Maslova, N., V
    ALGEBRA AND LOGIC, 2018, 57 (02) : 115 - 129
  • [2] FINITE ALMOST SIMPLE GROUPS WHOSE GRUENBERG-KEGEL GRAPHS AS ABSTRACT GRAPHS ARE ISOMORPHIC TO SUBGRAPHS OF THE GRUENBERG-KEGEL GRAPH OF THE ALTERNATING GROUP A(10)
    Kondrat'ev, Anatoly Semenovich
    Minigulov, Nikolai Alexandrovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1378 - 1382
  • [3] FINITE SOLVABLE GROUPS WHOSE GRUENBERG-KEGEL GRAPHS ARE ISOMORPHIC TO THE PAW
    Kondrat'ev, A. S.
    Minigulov, N. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (02): : 269 - 273
  • [4] FINITE ALMOST SIMPLE 5-PRIMARY GROUPS AND THEIR GRUENBERG-KEGEL GRAPHS
    Kondrat'ev, Anatoly S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 634 - 674
  • [5] The Gruenberg-Kegel graph of finite solvable rational groups
    Debon, Sara C.
    Garcia-Lucas, Diego
    del Rio, Angel
    JOURNAL OF ALGEBRA, 2024, 642 : 470 - 479
  • [6] On Finite Non-Solvable Groups Whose Gruenberg-Kegel Graphs are Isomorphic to the Paw
    Kondrat'ev, A. S.
    Minigulov, N. A.
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 653 - 667
  • [7] On the Gruenberg-Kegel graph of integral group rings of finite groups
    Kimmerle, W.
    Konovalov, A.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (06) : 619 - 631
  • [8] Gruenberg-Kegel graphs: Cut groups, rational groups and the prime graph question
    Baechle, Andreas
    Kiefer, Ann
    Maheshwary, Sugandha
    del Rio, Angel
    FORUM MATHEMATICUM, 2023, 35 (02) : 409 - 429
  • [9] Finite Almost Simple Groups Whose Gruenberg–Kegel Graphs Coincide with Gruenberg–Kegel Graphs of Solvable Groups
    I. B. Gorshkov
    N. V. Maslova
    Algebra and Logic, 2018, 57 : 115 - 129
  • [10] On characterization by Gruenberg-Kegel graph of finite simple exceptional groups of Lie type
    Maslova, Natalia V.
    Panshin, Viktor V.
    Staroletov, Alexey M.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)