Text-guided distillation learning to diversify video embeddings for text-video retrieval

被引:0
|
作者
Lee, Sangmin [1 ]
Kim, Hyung-Il [2 ]
Ro, Yong Man [3 ]
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Elect & Telecommun Res Inst, Visual Intelligence Res Sect, Daejeon 34129, South Korea
[3] Korea Adv Inst Sci & Technol, Image & Video Syst Lab, Daejeon 34141, South Korea
关键词
text-video retrieval; Diverse video embedding; Text-guided distillation learning; Text-agnostic; One-to-many correspondence;
D O I
10.1016/j.patcog.2024.110754
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional text-video retrieval methods typically match a video with a text on a one-to-one manner. However, a single video can contain diverse semantics, and text descriptions can vary significantly. Therefore, such methods fail to match a video with multiple texts simultaneously. In this paper, we propose a novel approach to tackle this one-to-many correspondence problem in text-video retrieval. We devise diverse temporal aggregation and a multi-key memory to address temporal and semantic diversity, consequently constructing multiple video embedding paths from a single video. Additionally, we introduce text-guided distillation learning that enables each video path to acquire meaningful distinct competencies in representing varied semantics. Our video embedding approach is text-agnostic, allowing the prepared video embeddings to be used continuously for any new text query. Experiments show our method outperforms existing methods on four datasets. We further validate the effectiveness of our designs with ablation studies and analyses on diverse video embeddings.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] TEACHTEXT: CrossModal Generalized Distillation for Text-Video Retrieval
    Croitoru, Ioana
    Bogolin, Simion-Vlad
    Leordeanu, Marius
    Jin, Hailin
    Zisserman, Andrew
    Albanie, Samuel
    Liu, Yang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11563 - 11573
  • [2] TEACHTEXT: CrossModal text-video retrieval through generalized distillation
    Croitoru, Ioana
    Bogolin, Simion-Vlad
    Leordeanu, Marius
    Jin, Hailin
    Zisserman, Andrew
    Liu, Yang
    Albanie, Samuel
    Artificial Intelligence, 2025, 338
  • [3] Learning Linguistic Association Towards Efficient Text-Video Retrieval
    Fang, Sheng
    Wang, Shuhui
    Zhuo, Junbao
    Han, Xinzhe
    Huang, Qingming
    COMPUTER VISION, ECCV 2022, PT XXXVI, 2022, 13696 : 254 - 270
  • [4] Learning Universal Policies via Text-Guided Video Generation
    Du, Yilun
    Yang, Mengjiao
    Dai, Bo
    Dai, Hanjun
    Nachum, Ofir
    Tenenbaum, Joshua B.
    Schuurmans, Dale
    Abbeel, Pieter
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] KnowER: Knowledge enhancement for efficient text-video retrieval
    Kou H.
    Yang Y.
    Hua Y.
    Intelligent and Converged Networks, 2023, 4 (02): : 93 - 105
  • [6] DiffusionRet: Generative Text-Video Retrieval with Diffusion Model
    Jin, Peng
    Li, Hao
    Cheng, Zesen
    Li, Kehan
    Ji, Xiangyang
    Liu, Chang
    Yuan, Li
    Chen, Jie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2470 - 2481
  • [7] UATVR: Uncertainty-Adaptive Text-Video Retrieval
    Fang, Bo
    Wu, Wenhao
    Liu, Chang
    Zhou, Yu
    Song, Yuxin
    Wang, Weiping
    Shu, Xiangbo
    Ji, Xiangyang
    Wang, Jingdong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13677 - 13687
  • [8] CenterCLIP: Token Clustering for Efficient Text-Video Retrieval
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 970 - 981
  • [9] MGSGA: Multi-grained and Semantic-Guided Alignment for Text-Video Retrieval
    Wu, Xiaoyu
    Qian, Jiayao
    Yang, Lulu
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [10] MGSGA: Multi-grained and Semantic-Guided Alignment for Text-Video Retrieval
    Xiaoyu Wu
    Jiayao Qian
    Lulu Yang
    Neural Processing Letters, 56