Machine learning aided line intensity ratio method for helium-hydrogen mixed recombining plasmas

被引:0
|
作者
Kajita, Shin [1 ]
Nishijima, Daisuke [2 ]
Fujii, Keisuke [3 ]
Tanaka, Hirohiko [4 ]
Vernimmen, Jordy [5 ]
van der Meiden, Hennie [5 ]
Classen, Ivo [5 ]
Ohno, Noriyasu [6 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Univ Calif San Diego, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA
[4] Nagoya Univ, Inst Mat & Syst Sustainabil, Nagoya 4648603, Japan
[5] DIFFER Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[6] Nagoya Univ, Grad Sch Engn, Nagoya 4648603, Japan
关键词
spectroscopy; machine learning; neural network; helium; divertor simulator; COLLISIONAL-RADIATIVE MODEL; MOLECULAR-HYDROGEN; DIVERTOR;
D O I
10.1088/1361-6587/ad6a81
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, ne, and temperature, Te, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium-hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure ne and Te from spectroscopic data of helium-hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce ne and Te from the visible emissions in helium-hydrogen mixed plasmas.
引用
收藏
页数:9
相关论文
共 10 条
  • [1] Machine learning-aided line intensity ratio technique applied to deuterium plasmas
    Nishijima, D.
    Baldwin, M. J.
    Chang, F.
    Tynan, G. R.
    [J]. AIP ADVANCES, 2023, 13 (05)
  • [2] EXPERIMENTAL STUDIES OF LINE INTENSITY RATIO AS A DIAGNOSTIC OF RECOMBINING PLASMAS
    ZHANG, J
    DWIVEDI, L
    KATO, Y
    KEY, MH
    KODAMA, R
    KRISHNAN, J
    LEWIS, CLS
    MURAI, K
    NORREYS, P
    PERT, GJ
    RAMSDEN, SA
    SHIRAGA, H
    SMITH, C
    TALLENTS, GJ
    UHOMOIBHI, J
    YUAN, G
    [J]. INSTITUTE OF PHYSICS CONFERENCE SERIES, 1992, (125): : 339 - 342
  • [3] Use of machine learning for a helium line intensity ratio method in Magnum-PSI
    Kajita, Shin
    Iwai, Sho
    Tanaka, Hirohiko
    Nishijima, Daisuke
    Fujii, Keisuke
    van der Meiden, Hennie
    Ohno, Noriyasu
    [J]. NUCLEAR MATERIALS AND ENERGY, 2022, 33
  • [4] Electron temperature measurement by a helium line intensity ratio method in helicon plasmas
    Boivin, RF
    Kline, JL
    Scime, EE
    [J]. PHYSICS OF PLASMAS, 2001, 8 (12) : 5303 - 5314
  • [5] Helium line intensity ratio in microwave-generated plasmas
    Podder, NK
    Johnson, JA
    Raynor, CT
    Loch, SD
    Ballance, CP
    Pindzola, MS
    [J]. PHYSICS OF PLASMAS, 2004, 11 (12) : 5436 - 5443
  • [6] Helium line emission spectroscopy to measure plasma parameters using modeling and machine learning in low-temperature plasmas
    Kajita, Shin
    Nishijima, Daisuke
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (42)
  • [7] Application of machine learning to spectroscopic line emission by hydrogen isotopes in fusion devices for isotopic ratio determination and prediction
    Koubiti, M.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (07):
  • [8] Application of machine learning to spectroscopic line emission by hydrogen isotopes in fusion devices for isotopic ratio determination and prediction
    M. Koubiti
    [J]. The European Physical Journal D, 2023, 77
  • [9] NEW DENSITY DIAGNOSTIC METHOD BASED ON EMISSION-LINE INTENSITY RATIO OF NEUTRAL HYDROGEN IN AN IONIZING PHASE PLASMA
    FUJIMOTO, T
    MIYACHI, S
    SAWADA, K
    [J]. NUCLEAR FUSION, 1988, 28 (07) : 1255 - 1263
  • [10] Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experiment Spherical Torus (vol 87, 11E540, 2016)
    Kim, YooSung
    Shi, Yue-Jiang
    Yang, Jeong-Hun
    Kim, SeongCheol
    Kim, Young-Gi
    Dang, Jeong-Jeung
    Yang, Seongmoo
    Jo, Jungmin
    Oh, Soo-Ghee
    Chung, Kyoung-Jae
    Hwang, Y. S.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):