On the Spanning Cyclability of k-ary n-cube Networks

被引:0
|
作者
Qiao, Hongwei [1 ]
Zhang, Wanping [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] China Univ Petr Beijing Karamay, Sch Sci & Art, Dept Math, Karamay 834000, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 08期
关键词
k-ary n-cube; spanning cyclable; Hamiltonian path; disjoint paths; 2-factor; DISJOINT PATH COVERS; TOPOLOGICAL PROPERTIES; PRESCRIBED VERTICES; CYCLES;
D O I
10.3390/sym16081063
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Embedding cycles into a network topology is crucial for a network simulation. In particular, embedding Hamiltonian cycles is a major requirement for designing good interconnection networks. A graph G is called r-spanning cyclable if, for any r distinct vertices v(1),v(2),& mldr;,v(r) of G, there exist r cycles C-1,C-2,& mldr;,C-r in G such that v(i) is on C-i for every i, and every vertex of G is on exactly one cycle C-i. If r = 1, this is the classical Hamiltonian problem. In this paper, we focus on the problem of embedding spanning disjoint cycles in bipartite k-ary n-cubes. Let k >= 4 be even and n >= 2. It is shown that the n-dimensional bipartite k-ary n-cube Q(n)(k) is m-spanning cyclable with m <= 2n - 1. Considering the degree of Q(n)(k), the result is optimal.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extraconnectivity of k-ary n-cube networks
    Hsieh, Sun-Yuan
    Chang, Ying-Hsuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 443 : 63 - 69
  • [2] On the extraconnectivity of k-ary n-cube networks
    Gu, Mei-Mei
    Hao, Rong-Xia
    Liu, Jian-Bing
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (01) : 95 - 106
  • [3] Load unbalance in k-ary n-cube networks
    Miguel-Alonso, J
    Gregorio, JA
    Puente, V
    Vallejo, F
    Beivide, R
    [J]. EURO-PAR 2004 PARALLEL PROCESSING, PROCEEDINGS, 2004, 3149 : 900 - 907
  • [4] Fault diameter of k-ary n-cube networks
    Day, K
    AlAyyoub, AE
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (09) : 903 - 907
  • [5] The reliability analysis of k-ary n-cube networks
    Lv, Mengjie
    Fan, Jianxi
    Chen, Guo
    Cheng, Baolei
    Zhou, Jingya
    Yu, Jia
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 835 : 1 - 14
  • [6] Fault tolerance in k-ary n-cube networks
    Wang, Shiying
    Zhang, Guozhen
    Feng, Kai
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 460 : 34 - 41
  • [7] Optical transpose k-ary n-cube networks
    Day, K
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2004, 50 (11) : 697 - 705
  • [8] Characterization of deadlocks in k-ary n-cube networks
    Pinkston, TM
    Warnakulasuriya, S
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (09) : 904 - 921
  • [9] Enhanced OTIS k-ary n-cube networks
    Das, Rajib K.
    [J]. Distributed Computing and Internet Technology, Proceedings, 2006, 4317 : 200 - 211
  • [10] Structure fault tolerance of k-ary n-cube networks
    Miao, Lu
    Zhang, Shurong
    Li, Rong-hua
    Yang, Weihua
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 795 : 213 - 218