AutoDLAR: A Semi-supervised Cross-modal Contact-free Human Activity Recognition System

被引:0
|
作者
Lu, Xinxin [1 ]
Wang, Lei [2 ,3 ]
Lin, Chi [2 ,3 ]
Fan, Xin [4 ]
Han, Bin [1 ]
Han, Xin [1 ]
Qin, Zhenquan [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Software, 321 Tuqiang St, Dalian 116600, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian, Peoples R China
[3] Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Peoples R China
[4] Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian, Peoples R China
关键词
WiFi-based human activity recognition; cross-modal transfer; semi-supervised learning; WIFI;
D O I
10.1145/3607254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
WiFi-based human activity recognition (HAR) plays an essential role in various applications such as security surveillance, health monitoring, and smart home. Existing HAR methods, though yielding promising performance in indoor scenarios, highly depend on a massive labeled dataset for training which is extremely difficult to acquire in practical applications. In this paper, we present an automatic data labeling and HAR system, termed AutoDLAR. Taking a semi-supervised cross-modal learning framework with a hybrid loss function as the core, AutoDLAR transfers rich visual information to automatically label WiFi signals for WiFi-based HAR. Specifically, we devise a lightweight and multi-view WiFi sensing model with a parallel feature embedding method to accurately identify activities and accelerate recognition speed. Then, we exploit the video data to fine-tune a well-established visual HAR model, generating effective pseudo-labels for guiding the WiFi model's training. We also build a synchronized Video-WiFi dataset with seven types of human activities under different scenarios to enable training and validating the semi-supervised HAR system. Extensive experiments on our collected activity dataset and the emotion recognition benchmark demonstrate that AutoDLAR attains an average accuracy of over 95.89% without manual labeling and only spends the inference time of 3.35 ms, outperforming the state-of-the-art (SOTA) methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A semi-supervised cross-modal memory bank for cross-modal retrieval
    Huang, Yingying
    Hu, Bingliang
    Zhang, Yipeng
    Gao, Chi
    Wang, Quan
    NEUROCOMPUTING, 2024, 579
  • [2] Semi-supervised Multi-modal Emotion Recognition with Cross-Modal Distribution Matching
    Liang, Jingjun
    Li, Ruichen
    Jin, Qin
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2852 - 2861
  • [3] Semi-Supervised Semi-Paired Cross-Modal Hashing
    Zhang, Xuening
    Liu, Xingbo
    Nie, Xiushan
    Kang, Xiao
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6517 - 6529
  • [4] Semi-Supervised Cross-Modal Retrieval With Label Prediction
    Mandal, Devraj
    Rao, Pramod
    Biswas, Soma
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (09) : 2345 - 2353
  • [5] Semi-supervised Deep Quantization for Cross-modal Search
    Wang, Xin
    Zhu, Wenwu
    Liu, Chenghao
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1730 - 1739
  • [6] Semi-Supervised Knowledge Distillation for Cross-Modal Hashing
    Su, Mingyue
    Gu, Guanghua
    Ren, Xianlong
    Fu, Hao
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 662 - 675
  • [7] Enhancing Semi-Supervised Learning with Cross-Modal Knowledge
    Zhu, Hui
    Lu, Yongchun
    Wang, Hongbin
    Zhou, Xunyi
    Ma, Qin
    Liu, Yanhong
    Jiang, Ning
    Wei, Xin
    Zeng, Linchengxi
    Zhao, Xiaofang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4456 - 4465
  • [8] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Fuhao Zou
    Xingqiang Bai
    Chaoyang Luan
    Kai Li
    Yunfei Wang
    Hefei Ling
    World Wide Web, 2019, 22 : 825 - 841
  • [9] Semi-supervised cross-modal learning for cross modal retrieval and image annotation
    Zou, Fuhao
    Bai, Xingqiang
    Luan, Chaoyang
    Li, Kai
    Wang, Yunfei
    Ling, Hefei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 825 - 841
  • [10] Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition
    Zhang, Sheng
    Chen, Min
    Chen, Jincai
    Li, Yuan-Fang
    Wu, Yiling
    Li, Minglei
    Zhu, Chuanbo
    KNOWLEDGE-BASED SYSTEMS, 2021, 229