The number of string C-groups of high rank

被引:0
|
作者
Cameron, Peter J. [1 ]
Fernandes, Maria Elisa [2 ]
Leemans, Dimitri [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat, Dept Math, Aveiro, Portugal
[3] Univ Libre Bruxelles, Dept Math, CP 216 Algebre & Combinatoire Blvd Triomphe, B-1050 Brussels, Belgium
关键词
Abstract regular polytopes; String C-groups; Symmetric groups; Permutation groups; Coxeter groups; POLYTOPES;
D O I
10.1016/j.aim.2024.109832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If Gis a transitive group of degree nhaving a string C-group of rank r=( n + 3)/2, then Gis necessarily the symmetric group Sn. We prove that if nis large enough, up to isomorphism and duality, the number of string C-groups of rank rfor Sn(with r=( n + 3)/2) is the same as the number of string C-groups of rank r+ 1for Sn+1. This result and the tools used in its proof, in particular the rank and degree extension, imply that if one knows the string C-groups of rank ( n+ 3)/2for Snwith nodd, one can construct from them all string C-groups of rank ( n + 3)/2 + kfor Sn+kfor any positive integer k. The classification of the string C-groups of rank r=( n + 3)/2for Snis thus reduced to classifying string C-groups of rank rfor S2r-3. A consequence of this result is the complete classification of all string C-groups of Snwith rank n -.for..{1,..., 7}, when n = 2.+3, which extends previously known results. The number of string C-groups of rank n -., with n = 2. + 3, of this classification gives the following sequence of integers indexed by.and starting at. = 1:
引用
收藏
页数:49
相关论文
共 50 条
  • [1] C-groups of high rank for the symmetric groups
    Fernandes, Maria Elisa
    Leemans, Dimitri
    [J]. JOURNAL OF ALGEBRA, 2018, 508 : 196 - 218
  • [2] STRING C-GROUPS OF ORDER 1024
    Gomi, Yasushi
    Loyola, Mark L.
    De las Penas, Ma Louise Antonette N.
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2018, 13 (01) : 1 - 22
  • [3] String C-groups as transitive subgroups of Sn
    Cameron, Peter J.
    Fernandes, Maria Elisa
    Leemans, Dimitri
    Mixer, Mark
    [J]. JOURNAL OF ALGEBRA, 2016, 447 : 468 - 478
  • [4] String C-groups with real Schur index 2
    Cameron, Peter J.
    Herman, Allen
    Leemans, Dimitri
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (08)
  • [5] SOLVABLE C-GROUPS
    VIVO, CD
    [J]. RICERCHE DI MATEMATICA, 1972, 21 (01) : 75 - &
  • [6] CONVOLUTED C-GROUPS
    Kostic, Marko
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2008, 84 (98): : 73 - 95
  • [7] On a method of constructing C-groups
    Kuz'min, YV
    [J]. IZVESTIYA MATHEMATICS, 1995, 59 (04) : 765 - 783
  • [8] C-groups of Suzuki type
    Connor, Thomas
    Leemans, Dimitri
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 849 - 860
  • [9] C-groups of Suzuki type
    Thomas Connor
    Dimitri Leemans
    [J]. Journal of Algebraic Combinatorics, 2015, 42 : 849 - 860
  • [10] QUOTIENTS OF POLYTOPES AND C-GROUPS
    MCMULLEN, P
    SCHULTE, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (04) : 453 - 464