Information-theoretic measures and Compton profile of H atom under finite oscillator potential

被引:1
|
作者
Mondal, Santanu [1 ]
Sadhukhan, Anjan [2 ]
Saha, Jayanta K. [3 ]
Roy, Amlan K. [1 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Dept Chem Sci, ,Nadia, Mohanpur 741246, India
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 300093, Taiwan
[3] Aliah Univ, Dept Phys, IIA-27, Newtown, Kolkata 700160, India
关键词
one-electron quantum dot; finite oscillator potential; Ritz variational method; quantum information measures; Compton profile; QUANTUM DOTS; ELECTRONIC-STRUCTURE; FISHER INFORMATION; SCATTERING; HYDROGEN; SHANNON; PLANE;
D O I
10.1088/1361-6455/ad5fd3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Information-theoretic measures for nl (2L) states of a H atom (with n=1-10 and l=0-2 , where n and l denote principal and angular momentum quantum numbers) have been investigated within a quantum dot by utilizing the Ritz variational principle, with the help of a Slater-type basis set. A well-established two-parameter (depth and width) model of finite oscillator potential is used to simulate the dot environment. The variationally optimized position (r)-space wave function is utilized to determine the momentum (p)-space wave function, leading to the generation of p-space radial density distribution. We explore the impact of cavity parameters on quantum information theoretic measures, such as Shannon (S) and Fisher information (I) entropy, in the ground as well as the excited state. The results of S were also used to test the Bialynicki-Birula-Mycielski inequality, related to the entropic uncertainty principle for the confined H atom. Some simple new fitting laws pertaining to S and I have been proposed. Furthermore, the p-space radial density is employed to derive the Compton profile of the confined H atom. Possible tunability of S,I and Compton profiles with respect to the parameters is noted.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Position and Momentum Information-Theoretic Measures of the Pseudoharmonic Potential
    Yahya, W. A.
    Oyewumi, K. J.
    Sen, K. D.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (21) : 1543 - 1552
  • [2] Information-theoretic measures for a solitonic profile mass Schrodinger equation with a squared hyperbolic cosecant potential
    Serrano, F. A.
    Falaye, B. J.
    Dong, Shi-Hai
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 446 : 152 - 157
  • [3] Quantum information-theoretic measures for the static screened Coulomb potential
    Isonguyo, Cecilia N.
    Oyewumi, Kayode J.
    Oyun, Opeyemi S.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (15) : 1
  • [4] Information-theoretic measures for anomaly detection
    Lee, W
    Xiang, D
    2001 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 2001, : 130 - 143
  • [5] ON CHARACTERIZATION OF USEFUL INFORMATION-THEORETIC MEASURES
    PARKASH, O
    SINGH, RS
    KYBERNETIKA, 1987, 23 (03) : 245 - 251
  • [6] Information-theoretic measures of hyperspherical harmonic
    Dehesa, J. S.
    Lopez-Rosa, S.
    Yanez, R. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (04)
  • [7] INFORMATION-THEORETIC MEASURES OF READER ENJOYMENT
    FINN, S
    WRITTEN COMMUNICATION, 1985, 2 (04) : 358 - 376
  • [8] AXIOMATIC CHARACTERIZATION OF INFORMATION-THEORETIC MEASURES
    SHARMA, BD
    TANEJA, IJ
    JOURNAL OF STATISTICAL PHYSICS, 1974, 10 (04) : 337 - 346
  • [9] Shannon entropy and Fisher information-theoretic measures for Mobius square potential
    Ikot, A. N.
    Rampho, G. J.
    Amadi, P. O.
    Sithole, M. J.
    Okorie, U. S.
    Lekala, M. I.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [10] Shannon entropy and Fisher information-theoretic measures for Mobius square potential
    A. N. Ikot
    G. J. Rampho
    P. O. Amadi
    M. J. Sithole
    U. S. Okorie
    M. I. Lekala
    The European Physical Journal Plus, 135