Generation & Clinical Validation of Individualized Gait Trajectory for Stroke Patients Based on Lower Limb Exoskeleton Robot

被引:0
|
作者
Zhang, Shisheng [1 ,2 ]
Zhang, Yang [3 ,4 ]
Luan, Mengbo [1 ,2 ]
Peng, Ansi [5 ,6 ]
Ye, Jing [7 ]
Chen, Gong [7 ]
Fu, Chenglong [8 ,9 ]
Leng, Yuquan [8 ,9 ]
Wu, Xinyu [9 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Beijing 100049, Peoples R China
[3] Shenzhen Technol Univ, Mech Ind Key Lab Intelligent Robot Technol 3C Prod, Shenzhen 518118, Peoples R China
[4] Shenzhen Technol Univ, Sino German Coll Intelligent Mfg, Shenzhen 518118, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[6] Chinese Acad Sci, Shenzhen Inst Adv Tech nol, SIAT CUHK Joint Lab Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[7] MileBot Robot Co Ltd, Shenzhen 518055, Peoples R China
[8] Southern Univ Sci & Technol, Shenzhen Key Lab Biomimet Robot & Intelligent Syst, Guangdong Prov Key Lab Human Augmentat & Rehabil R, Shenzhen 518055, Peoples R China
[9] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; Robots; Legged locomotion; Training; Stroke (medical condition); Exoskeletons; Fast Fourier transforms; Individualized gait trajectory; fast Fourier transform (FFT); Gaussian process regression (GPR); lower limb exoskeleton robot; REHABILITATION; NETWORK; MODEL;
D O I
10.1109/TASE.2024.3445886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing research suggests that lower limb exoskeleton robots, when used for rehabilitation training based on the pre-stroke gait trajectories of stroke patients, may be more beneficial for gait rehabilitation. However, it's challenging to obtain such personalized trajectories for specific patients. Therefore, this hypothesis is difficult to be verified. This paper introduces an Individualized Gait Trajectory Generation (IGTG) method based on Fast Fourier Transform (FFT) to approximate and regress pre-stroke gaits, along with conducting clinical rehabilitation validation trials. Initially, human gait trajectories are described using Fourier coefficients to construct gait features. Subsequently, a probabilistic mapping between these gait features and physical body parameters is established. Then, personalized gait trajectories are obtained by applying the inverse Fourier transform to the predicted gait features. The application of fast Fourier transform can reduce the number of the regression data points needed, decrease dependency on large datasets, and enhance the systematic robustness. This algorithm is trained using body parameters and gait trajectories collected from 128 healthy subjects. The algorithm is further applied to generate specific personalized trajectories for the 9 stroke patients. Clinical trial results indicate that rehabilitation training using these individualized gait trajectories reduces blood oxygen saturation (SpO2) and heart rate (HR) by up to 66.67% and 69.23% respectively compared to training with fixed trajectories.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Individualized Gait Pattern Generation or Sharing Lower Limb Exoskeleton Robot
    Wu, Xinyu
    Liu, Du-Xin
    Liu, Ming
    Chen, Chunjie
    Guo, Huiwen
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2018, 15 (04) : 1459 - 1470
  • [2] Trajectory Generation and Control of a Lower Limb Exoskeleton for Gait Assistance
    Lincong Luo
    Ming Jeat Foo
    Manoj Ramanathan
    Jie Kai Er
    Chye Hsia Chiam
    Lei Li
    Wei Yun Yau
    Wei Tech Ang
    Journal of Intelligent & Robotic Systems, 2022, 106
  • [3] Trajectory Generation and Control of a Lower Limb Exoskeleton for Gait Assistance
    Luo, Lincong
    Foo, Ming Jeat
    Ramanathan, Manoj
    Er, Jie Kai
    Chiam, Chye Hsia
    Li, Lei
    Yau, Wei Yun
    Ang, Wei Tech
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 106 (03)
  • [4] Design of Lower Limb Exoskeleton for Stroke Patients Gait Rehabilitation
    Sanjaya, Kadek Heri
    Kusumandari, Dwi Esti
    Ristiana, Rina
    Ambadar, Zaki
    Utama, Dhiny Hari
    Shafira, Nadirra Shifa Zuhra
    2021 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET), 2021, : 264 - 269
  • [5] Optimisation of Reference Gait Trajectory of a Lower Limb Exoskeleton
    Huang, Rui
    Cheng, Hong
    Chen, Yi
    Chen, Qiming
    Lin, Xichuan
    Qiu, Jing
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2016, 8 (02) : 223 - 235
  • [6] Optimisation of Reference Gait Trajectory of a Lower Limb Exoskeleton
    Rui Huang
    Hong Cheng
    Yi Chen
    Qiming Chen
    Xichuan Lin
    Jing Qiu
    International Journal of Social Robotics, 2016, 8 : 223 - 235
  • [7] Kinematics Modeling and Gait Trajectory Tracking for Lower Limb Exoskeleton Robot based on PD Control with Gravity Compensation
    Liu, Yang
    Peng, Shi-guo
    Du, Yu-xiao
    Liao, Wei Hsin
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4504 - 4511
  • [8] Adaptive gait generation based on pose graph optimization for Lower-limb Rehabilitation Exoskeleton Robot
    Wu, Xingming
    Guo, Debin
    Wang, Jianhua
    Zhang, Jianbin
    Chen, Weihai
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1501 - 1506
  • [9] An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot
    Zhang, Shisheng
    Fan, Liting
    Ye, Jing
    Chen, Gong
    Fu, Chenglong
    Leng, Yuquan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3106 - 3117
  • [10] Gait Recognition and Trajectory Prediction of Lower Limb Load Exoskeleton
    Yang Yong
    Zhou Pan
    Ma Lei
    Shu Yang
    Zhou Jie
    Yao Jian
    Zhang Qianyong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6266 - 6271