Hypergraph-based convex semi-supervised unconstraint symmetric matrix factorization for image clustering

被引:0
|
作者
Luo, Wenjun [1 ]
Wu, Zezhong [1 ]
Zhou, Nan [2 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Chengdu Univ, Sch Elect Informat & Elect Engn, Chengdu 610106, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Symmetric matrix factorization; Conjugate gradient method; Convex matrix factorization; Semi-supervised learning; Clustering; CONJUGATE-GRADIENT METHOD; BFGS METHOD; DESCENT;
D O I
10.1016/j.ins.2024.121138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semi-supervised symmetric nonnegative matrix factorization (SNMF) has been extensively utilized in both linear and nonlinear data clustering tasks. However, the current SNMF model's nonconvex objective function faces challenges in global optimization and time efficiency. In this study, we leverage label information to propose a convex and unconstrained symmetric matrix factorization (SMF) model that is thoroughly analyzed for its convexity properties. In order to capture high-order relationships among data, a hypergraph is utilized in the model, which is computationally simple, translation invariant, and naturally normalized. Moreover, based on the analysis and the corresponding experiments in the paper, the model exhibits robustness towards outliers to some extent. Due to the convexity of our proposed model without constraint, it can be efficiently optimized using the Conjugate Gradient (CG) method, one of the most efficient methods available. Therefore, we propose a novel Convex Combination-based Sufficient Descent CG (CSDCG) method, which outperforms other methods across 284 optimization problems within the CUTEst library. In order to evaluate the effectiveness of the proposed method, the semi-supervised clustering experiments are conducted on the eight datasets by comparison with ten state-of-theart matrix factorization (MF) methods. The experiment results demonstrate its superiority over the other compared methods to handle the clustering problem with better performance and less computational time. The code is available at https://github .com /Pokemer /HCSSMF.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Hypergraph based semi-supervised symmetric nonnegative matrix factorization for image clustering
    Yin, Jingxing
    Peng, Siyuan
    Yang, Zhijing
    Chen, Badong
    Lin, Zhiping
    PATTERN RECOGNITION, 2023, 137
  • [2] Multiview Clustering via Hypergraph Induced Semi-Supervised Symmetric Nonnegative Matrix Factorization
    Peng, Siyuan
    Yin, Jingxing
    Yang, Zhijing
    Chen, Badong
    Lin, Zhiping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5510 - 5524
  • [3] Robust semi-supervised nonnegative matrix factorization for image clustering
    Peng, Siyuan
    Ser, Wee
    Chen, Badong
    Lin, Zhiping
    PATTERN RECOGNITION, 2021, 111
  • [4] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Ying Zhang
    Xiangli Li
    Mengxue Jia
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3577 - 3587
  • [5] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Zhang, Ying
    Li, Xiangli
    Jia, Mengxue
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3577 - 3587
  • [6] Autoencoder and Hypergraph-Based Semi-Supervised Broad Learning System
    Wang X.-S.
    Zhang H.-L.
    Cheng Y.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (03): : 533 - 539
  • [7] Robust Semi-Supervised Community Detection Based on Symmetric Nonnegative Matrix Factorization
    Xie, Wenyun
    Peng, Siyuan
    Yang, Zhijing
    2024 5th International Conference on Computer Engineering and Intelligent Control, ICCEIC 2024, 2024, : 55 - 61
  • [8] Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian
    He, Yangcheng
    Lu, Hongtao
    Xie, Saining
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (02) : 1441 - 1463
  • [9] Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian
    Yangcheng He
    Hongtao Lu
    Saining Xie
    Multimedia Tools and Applications, 2014, 72 : 1441 - 1463
  • [10] Semi-supervised Nonnegative Matrix Factorization for Microblog Clustering Based on Term Correlation
    Ma, Huifang
    Jia, Meihuizi
    Shi, Yakai
    Hao, Zhanjun
    WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2014, 2014, 8709 : 511 - 516