Isoperimetry and the properness of weak inverse mean curvature flow

被引:0
|
作者
Xu, Kai [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
53E10; 49Q20; RIEMANNIAN PENROSE INEQUALITY; HYPERSURFACES; MANIFOLDS;
D O I
10.1007/s00526-024-02832-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a new existence theorem for proper solutions of Huisken and Ilmanen's weak inverse mean curvature flow, assuming certain non-degeneracy conditions on the isoperimetric profile. In particular, no curvature assumption is imposed in our existence theorem.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Properness of translating solitons for the mean curvature flow
    Kim, Daehwan
    Pyo, Juncheol
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (04)
  • [2] Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow
    Gimeno, Vicent
    Palmer, Vicente
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 31 (1) : 579 - 618
  • [3] Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow
    Vicent Gimeno
    Vicente Palmer
    [J]. The Journal of Geometric Analysis, 2021, 31 : 579 - 618
  • [4] Weak solutions of inverse mean curvature flow for hypersurfaces with boundary
    Marquardt, Thomas
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 728 : 237 - 261
  • [5] GEROCH MONOTONICITY AND THE CONSTRUCTION OF WEAK SOLUTIONS OF THE INVERSE MEAN CURVATURE FLOW
    Moser, Roger
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (02) : 357 - 375
  • [6] Hyperbolic Inverse Mean Curvature Flow
    Jing Mao
    Chuan-Xi Wu
    Zhe Zhou
    [J]. Czechoslovak Mathematical Journal, 2020, 70 : 33 - 66
  • [7] SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW
    Drugan, Gregory
    Lee, Hojoo
    Wheeler, Glen
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (02) : 309 - 326
  • [8] Inverse Mean Curvature Flow With Singularities
    Choi, Beomjun
    Hung, Pei -Ken
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (10) : 8683 - 8702
  • [9] Hyperbolic Inverse Mean Curvature Flow
    Mao, Jing
    Wu, Chuan-Xi
    Zhou, Zhe
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 33 - 66
  • [10] MEAN CURVATURE, VOLUME AND PROPERNESS OF ISOMETRIC IMMERSIONS
    Gimeno, Vicent
    Palmer, Vicente
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4347 - 4366