TriCAFFNet: A Tri-Cross-Attention Transformer with a Multi-Feature Fusion Network for Facial Expression Recognition

被引:1
|
作者
Tian, Yuan [1 ]
Wang, Zhao [1 ]
Chen, Di [1 ]
Yao, Huang [1 ]
机构
[1] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China
关键词
facial expression recognition; vision transformer; multi-feature; tri-cross attention; CLASSIFICATION; SCALE;
D O I
10.3390/s24165391
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In recent years, significant progress has been made in facial expression recognition methods. However, tasks related to facial expression recognition in real environments still require further research. This paper proposes a tri-cross-attention transformer with a multi-feature fusion network (TriCAFFNet) to improve facial expression recognition performance under challenging conditions. By combining LBP (Local Binary Pattern) features, HOG (Histogram of Oriented Gradients) features, landmark features, and CNN (convolutional neural network) features from facial images, the model is provided with a rich input to improve its ability to discern subtle differences between images. Additionally, tri-cross-attention blocks are designed to facilitate information exchange between different features, enabling mutual guidance among different features to capture salient attention. Extensive experiments on several widely used datasets show that our TriCAFFNet achieves the SOTA performance on RAF-DB with 92.17%, AffectNet (7 cls) with 67.40%, and AffectNet (8 cls) with 63.49%, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-feature fusion network for facial expression recognition in the wild
    Gong, Weijun
    Wang, Chaoqing
    Jia, Jinlu
    Qian, Yurong
    Fan, Yingying
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 4999 - 5011
  • [2] A Hierarchical Algorithm with Multi-Feature Fusion for Facial Expression Recognition
    Zhang, Zheng
    Fang, Chi
    Ding, Xiaoqing
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2363 - 2366
  • [3] Facial Expression Recognition Based on Multi-Feature Fusion and HOSVD
    He, Ying
    He, Xiaoju
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 638 - 643
  • [4] Attention-Rectified and Texture-Enhanced Cross-Attention Transformer Feature Fusion Network for Facial Expression Recognition
    Sun, Mingyi
    Cui, Weigang
    Zhang, Yue
    Yu, Shuyue
    Liao, Xiaofeng
    Hu, Bin
    Li, Yang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (12) : 11823 - 11832
  • [5] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Zou, Wei
    Zhang, Dong
    Lee, Dah-Jye
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2918 - 2929
  • [6] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Wei Zou
    Dong Zhang
    Dah-Jye Lee
    Applied Intelligence, 2022, 52 : 2918 - 2929
  • [7] Locality Feature Aggregation Loss and Multi-feature Fusion for Facial Expression Recognition
    Wang H.
    Li Y.
    Fang B.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2020, 33 (03): : 268 - 276
  • [8] Research on Multi-feature Fusion Algorithm for Facial Expression Recognition System
    Wang, Yingying
    Li, Yibin
    Song, Yong
    Rong, Xuewen
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 403 - 407
  • [9] Hierarchical attention network with progressive feature fusion for facial expression recognition
    Tao, Huanjie
    Duan, Qianyue
    NEURAL NETWORKS, 2024, 170 : 337 - 348
  • [10] Multi-feature decomposition and transformer-fusion: an infrared and visible image fusion network based on multi-feature decomposition and transformer
    Li, Xujun
    Duan, Zhicheng
    Chang, Jia
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)