Refinement of Midpoint and Trapezoid Type Inequalities for Multiplicatively Convex Functions

被引:1
|
作者
Berhail, Amel [1 ]
Meftah, Badreddine [1 ]
机构
[1] 08 May 1945 Univ, Fac Math Comp Sci & Sci Matter, Dept Math, Guelma, Algeria
来源
关键词
Non-Newtonian calculus; Midpoint inequality; Trapezoid inequality; Multiplicatively convex functions; HERMITE-HADAMARD TYPE; DIFFERENTIABLE MAPPINGS; INTEGRAL-INEQUALITIES;
D O I
10.22130/scma.2023.2015455.1529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we first establish two new identities for multiplicative differentiable functions. Based on these identities, we derive the midpoint and trapezoid type inequalities. The acquired outcomes improve and refine upon Khan and Budak's findings. At the conclusion, some applications to special means are provided.
引用
收藏
页码:267 / 278
页数:13
相关论文
共 50 条
  • [1] Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions
    Ozcan, Serap
    DEMONSTRATIO MATHEMATICA, 2025, 58 (01)
  • [2] QUANTUM ANALOG OF SOME TRAPEZOID AND MIDPOINT TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Baidar, Abdul Wakil
    Kunt, Mehmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 456 - 480
  • [3] On generalizations of post quantum midpoint and trapezoid type inequalities for (?, m)-convex functions
    Gulshan, Ghazala
    Budak, Huseyin
    Hussain, Rashida
    Sadiq, Asad
    FILOMAT, 2023, 37 (14) : 4493 - 4506
  • [4] Some Parameterized Quantum Midpoint and Quantum Trapezoid Type Inequalities for Convex Functions with Applications
    Asawasamrit, Suphawat
    Ali, Muhammad Aamir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ENTROPY, 2021, 23 (08)
  • [5] MACLAURIN TYPE INEQUALITIES FOR MULTIPLICATIVELY CONVEX FUNCTIONS
    Meftah, Badreddine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2115 - 2125
  • [6] Dual Simpson type inequalities for multiplicatively convex functions
    Meftah, Badreddine
    Lakhdari, Abdelghani
    FILOMAT, 2023, 37 (22) : 7673 - 7683
  • [7] A new version of q-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Khan, Sundas
    MATHEMATICA SLOVACA, 2023, 73 (02) : 369 - 386
  • [8] Hermite-Hadamard, Trapezoid and Midpoint Type Inequalities Involving Generalized Fractional Integrals for Convex Functions
    Kara, Hasan
    Erden, Samet
    Budak, Huseyin
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (02): : 85 - 107
  • [9] Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions
    Peng, Yu
    Du, Tingsong
    FILOMAT, 2023, 37 (28) : 9497 - 9509
  • [10] Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
    Sitho, Surang
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    MATHEMATICS, 2021, 9 (14)