Ea-yolo: efficient extraction and aggregation mechanism of YOLO for fire detection

被引:0
|
作者
Wang, Dongmei [1 ,2 ]
Qian, Ying [1 ,2 ]
Lu, Jingyi [1 ,2 ,3 ,4 ]
Wang, Peng [1 ,2 ,3 ,4 ]
Yang, Dandi [1 ,2 ,3 ,4 ]
Yan, Tianhong [1 ]
机构
[1] Northeast Petr Univ, SANYA Offshore Oil & Gas Res Inst, Sanya 572023, Peoples R China
[2] Northeast Petr Univ, Coll Elect & Informat Engn, Daqing 163318, Peoples R China
[3] Heilongjiang Prov Key Lab Networking & Intelligent, Daqing 163318, Peoples R China
[4] Northeast Petr Univ, Artificial Intelligence Energy Res lnstitute, Daqing 163318, Peoples R China
关键词
Fire detection; EA-YOLO; Attention mechanisms; Feature extraction and fusion; Fire datasets; NETWORK;
D O I
10.1007/s00530-024-01489-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For fire detection, there are characteristics such as variable samples feature morphology, complex background and dense targets, small samples size of dataset and imbalance of categories, which lead to the problems of low accuracy and poor real-time performance of the existing fire detection models. We propose EA-YOLO, a flame and smoke detection model based on efficient multi-scale feature enhancement. In order to improve the extraction capability of the network model for flame smoke targets' features, an efficient attention mechanism is integrated into the backbone network, Multi Channel Attention (MCA), and the number of parameters of the model is reduced by introducing the RepVB module; at the same time, we design a multi-weighted, multidirectional feature neck structure called the Multidirectional Feature Pyramid Network (MDFPN), to enhance the model's flame smoke target feature information fusion ability; finally, we redesign the CIoU loss function by introducing the Slide weighting function to improve the imbalance between difficult and easy samples. Additionally, to address the issue of small sample sizes in fire datasets, we establish two new fire datasets: Fire-smoke and Ro-fire-smoke. The latter includes a model robustness validation function. The experimental results show that the method of this paper is 6.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 7.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} higher compared to the baseline model YOLOv7 on the Fire-smoke and Ro-fire-smoke datasets, respectively. The detection speed is 74.6 frames per second. To fully demonstrate the superiority of EA-YOLO, we utilized the public FASDD dataset and compared several state-of-the-art (SOTA) models with EA-YOLO on this dataset. The results were highly favorable. It fully demonstrates that the method in this paper has high fire detection accuracy while considering the real-time nature of the model. The source code and datasets are located at https://github.com/DIADH/DIADH.YOLO.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] EA-YOLO: An Efficient and Accurate UAV Image Object Detection Algorithm
    Dong, Dehao
    Li, Jianzhuang
    Liu, Haiying
    Deng, Lixia
    Gu, Jason
    Liu, Lida
    Li, Shuang
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024,
  • [2] A small defect detection technique for industrial product surfaces based on the EA-YOLO model
    Biao Li
    Bing Wang
    Xiong Hu
    Jianhui Zhai
    Changping Ji
    The Journal of Supercomputing, 81 (2)
  • [3] YOLO-SF: YOLO for Fire Segmentation Detection
    Cao, Xianghong
    Su, Yixuan
    Geng, Xin
    Wang, Yongdong
    IEEE ACCESS, 2023, 11 : 111079 - 111092
  • [4] DCGC-YOLO: The Efficient Dual-Channel Bottleneck Structure YOLO Detection Algorithm for Fire Detection
    He, Yun
    Hu, Junjie
    Zeng, Ming
    Qian, Yingjing
    Zhang, Renmin
    IEEE ACCESS, 2024, 12 : 65254 - 65265
  • [5] Efficient forest fire detection based on an improved YOLO model
    Lei Cao
    Zirui Shen
    Sheng Xu
    Visual Intelligence, 2 (1):
  • [6] EMG-YOLO: An efficient fire detection model for embedded devices
    Xiao, Linsong
    Li, Wenzao
    Zhang, Xiaoqiang
    Jiang, Hong
    Wan, Bing
    Ren, Dehao
    Digital Signal Processing: A Review Journal, 2025, 156
  • [7] Forest Fire Detection Based on Lightweight Yolo
    Wang, Shengying
    Chen, Tao
    Lv, Xinyu
    Zhao, Jing
    Zou, Xiaoyan
    Zhao, Xiaoye
    Xiao, Mingxia
    Wei, Haicheng
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1560 - 1565
  • [8] Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
    Hu, Mengzi
    Li, Ziyang
    Yu, Jiong
    Wan, Xueqiang
    Tan, Haotian
    Lin, Zeyu
    SENSORS, 2023, 23 (14)
  • [9] YOLO-SLD: An Attention Mechanism-Improved YOLO for License Plate Detection
    Chung, Ming-An
    Lin, Yu-Jou
    Lin, Chia-Wei
    IEEE ACCESS, 2024, 12 : 89035 - 89045
  • [10] Fire detection based on improved PP-YOLO
    Chen, Chuangmao
    Yu, Jie
    Lin, Yuqing
    Lai, Fuqiang
    Zheng, Guoqiang
    Lin, Youxi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1061 - 1067