Kinetic and thermodynamic analysis of co-pyrolysis of rice straw and polystyrene

被引:2
|
作者
Anshu, Kumari [1 ]
Thengane, Sonal K. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Hydro & Renewable Energy, Roorkee 247667, Uttarakhand, India
关键词
Co-pyrolysis; Rice straw; Polystyrene; Kinetic analysis; Thermodynamic analysis; Artificial neural network modeling; BIOFUEL PRODUCTION; WASTE POLYSTYRENE; BIOMASS PYROLYSIS; RECENT PROGRESS; POLYETHYLENE; PLASTICS; LIQUID; CONVERSION; MIXTURES; PRODUCTS;
D O I
10.1007/s13399-024-06047-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present work investigates the co-pyrolysis of rice straw (RS) and polystyrene (PS) using a thermogravimetric analyzer to understand the kinetics and synergistic effect between the two feedstocks. Seven samples, namely, RS, PS, PS 0.05 (5 wt.% PS), PS 0.1 (10 wt.% PS), PS 0.2 (20 wt.% PS), PS 0.3 (30 wt.% PS), and PS 0.4 (40 wt.% PS) are used for the analysis. Two pyrolysis performance indices: devolatilization index (DI) and heat resistance index (HRI), are estimated to respectively analyze the volatiles release potential and thermal stability of the samples. Activation energy values are estimated using seven different iso-conversional models whereas the pre-exponential factor (A) is determined by the Kissinger equation and reaction order is determined using Avrami theory. The average apparent activation energy for different blends varies from 140.26 kJ/mol to 224.17 kJ/mol, with a minimum value obtained for PS 0.3 (135.71 kJ/mol) followed by PS 0.1 (139.95 kJ/mol) and PS 0.05 (140.27 kJ/mol). The reaction order concerning different temperatures and Criado master plot results reflect that RS, PS, and their respective blends followed a complex pyrolysis/co-pyrolysis reaction mechanism. The kinetic parameters gained via the most accurate Vyazovkin method are used to estimate Gibbs free energy (triangle G), enthalpy (triangle H), and entropy (triangle S) values. The estimated kinetic and thermodynamic parameters predicted PS 0.05, PS 0.1, and PS 0.3 as attractive blends for co-pyrolysis. Additionally, an artificial neural network (ANN) model is developed to predict the thermal decomposition of samples based on temperature, heating rate, and blending ratio. This study provides essential information for understanding the reaction mechanism and reactor design for RS and PS co-pyrolysis.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Co-pyrolysis characteristics and kinetic analysis of wheat straw and lignite
    Liu X.
    Yang P.
    Wang J.
    Zhao S.
    Hu J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (09): : 410 - 415
  • [2] Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis
    Singh, Sanjay
    Tagade, Ankita
    Verma, Ashish
    Sharma, Ajay
    Tekade, Shyam P.
    Sawarkar, Ashish N.
    BIORESOURCE TECHNOLOGY, 2022, 356
  • [3] Co-pyrolysis of biomass blends: Characterization, kinetic and thermodynamic analysis
    Muigai, Harrison Hihu
    Choudhury, Bhaskar J.
    Kalita, Pankaj
    Moholkar, Vijayanand S.
    BIOMASS & BIOENERGY, 2020, 143
  • [4] Microwave co-pyrolysis of sewage sludge and rice straw
    Huang, Yu-Fong
    Shih, Chun-Hao
    Chiueh, Pei-Te
    Lo, Shang-Lien
    ENERGY, 2015, 87 : 638 - 644
  • [5] Pyrolysis and co-pyrolysis of cattle manure, rape straw, and their blend: Physicochemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis
    Qi, Huini
    Li, Fashe
    Wang, Shuang
    Sui, Meng
    Lu, Fengju
    ENERGY, 2024, 292
  • [6] Thermogravimetric analysis of rice husk and low-density polyethylene co-pyrolysis: kinetic and thermodynamic parameters
    Bisen, Divya
    Chouhan, Ashish Pratap Singh
    Sarma, Anil Kumar
    Rajamohan, Sakthivel
    Elumalai, P. V.
    Balasubramanian, Dhinesh
    Cherie, Aschalew
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Thermogravimetric Analysis of the Effects of Transition Metals on the Co-pyrolysis of Rice Straw and Polyethylene
    Liu, Guofu
    Wang, Zhanghong
    Shen, Dekui
    Wu, Chunfei
    Gu, Sai
    BIORESOURCES, 2019, 14 (04): : 9033 - 9053
  • [8] Thermogravimetric analysis of the effects of transition metals on the Co-pyrolysis of rice straw and polyethylene
    Liu, Guofu
    Wang, Zhanghong
    Shen, Dekui
    Wu, Chunfei
    Gu, Sai
    BioResources, 2019, 14 (04): : 9033 - 9053
  • [9] Immobilization of Chromium Contaminated Soil by Co-pyrolysis with Rice Straw
    Chen, Yimeng
    Chen, Hualin
    Thring, Ronald W.
    Liu, Huan
    Zhou, Jiangmin
    Tao, Yueliang
    Li, Jianbing
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05):
  • [10] Co-pyrolysis of Rice Straw with High Density Polyethylene Bag
    Anshar, Muhammad
    Ani, Farid Nasir
    Kader, Ab Saman
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (03): : 977 - 987