Neural Network Architectures Comparison for Atrial Fibrillation Detection

被引:0
|
作者
Aguilar, Jaylenne [1 ]
Tacuri-Pizha, Nelly [1 ]
Cevallos-Bermeo, Gabriela [1 ]
Villalba-Meneses, Fernando [1 ]
Cruz-Varela, Jonathan [1 ]
Teran-Grijalva, Cristhian [2 ]
Cadena-Morejon, Carolina [3 ]
Tirado-Espin, Andres [3 ,4 ]
Almeida-Galarraga, Diego [1 ,4 ]
机构
[1] Univ Yachay Tech, Sch Biol Sci & Engn, Urcuqui, Ecuador
[2] Ejercito Ecuatoriano, Grp Fuerzas Especiales Grad Miguel Iturralde 27, Latacunga, Ecuador
[3] Univ Yachay Tech, Sch Math & Computat Sci, Urcuqui, Ecuador
[4] Univ Otavalo, Otavalo, Ecuador
关键词
Atrial fibrillation detection; AT' diagnosis; AF detection with AIL; CLASSIFICATION;
D O I
10.1109/ICI2ST62251.2023.00009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting about 50,000 new people each year in Latin America. At' is characterized by irregular and rapid heartbeats that can lead to serious complications, such as stroke, heart failure, and all-cause mortality. Traditional methods for AF detection are time consuming and can be prone to human error. Therefore, this work reports the results from two methods using machine learning techniques to assist the diagnosis of Al' through 2 hybrid models of neural networks: The ID- CNN with BILSTN1 model and the NlobileNetV2 with BILSTM model which reached 81 and 75% accuracy respectively.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 50 条
  • [1] Atrial Fibrillation Detection with Convolutional Neural Network
    Luo, Jingting
    Fu, Canmiao
    Bai, Mengjie
    Zhao, Yong
    [J]. PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 94 - 98
  • [2] Atrial Fibrillation Detection Using a Feedforward Neural Network
    Yunfan Chen
    Chong Zhang
    Chengyu Liu
    Yiming Wang
    Xiangkui Wan
    [J]. Journal of Medical and Biological Engineering, 2022, 42 : 63 - 73
  • [3] Atrial Fibrillation Detection Using a Feedforward Neural Network
    Chen, Yunfan
    Zhang, Chong
    Liu, Chengyu
    Wang, Yiming
    Wan, Xiangkui
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2022, 42 (01) : 63 - 73
  • [4] Multiscale dilated convolutional neural network for Atrial Fibrillation detection
    Xia, Lingnan
    He, Sirui
    Huang, Y-F
    Ma, Hua
    [J]. PLOS ONE, 2024, 19 (06):
  • [5] AFibNet: an implementation of atrial fibrillation detection with convolutional neural network
    Bambang Tutuko
    Siti Nurmaini
    Alexander Edo Tondas
    Muhammad Naufal Rachmatullah
    Annisa Darmawahyuni
    Ria Esafri
    Firdaus Firdaus
    Ade Iriani Sapitri
    [J]. BMC Medical Informatics and Decision Making, 21
  • [6] AFibNet: an implementation of atrial fibrillation detection with convolutional neural network
    Tutuko, Bambang
    Nurmaini, Siti
    Tondas, Alexander Edo
    Rachmatullah, Muhammad Naufal
    Darmawahyuni, Annisa
    Esafri, Ria
    Firdaus, Firdaus
    Sapitri, Ade Iriani
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [7] The atrial neural network as a substrate for atrial fibrillation
    Mao, Jun
    Scherlag, Benjamin J.
    Liu, Yu
    Fan, Youqi
    Varma, Vandana
    Stavrakis, Stavros
    Po, Sunny S.
    [J]. JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY, 2012, 35 (01) : 3 - 9
  • [8] Atrial Fibrillation Detection by the Combination of Recurrence Complex Network and Convolution Neural Network
    Wei, Xiaoling
    Li, Jimin
    Zhang, Chenghao
    Liu, Ming
    Xiong, Peng
    Yuan, Xin
    Li, Yifei
    Lin, Feng
    Liu, Xiuling
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2019, 2019
  • [9] The atrial neural network as a substrate for atrial fibrillation
    Jun Mao
    Benjamin J. Scherlag
    Yu Liu
    Youqi Fan
    Vandana Varma
    Stavros Stavrakis
    Sunny S. Po
    [J]. Journal of Interventional Cardiac Electrophysiology, 2012, 35 : 3 - 9
  • [10] Industrial Anomaly Detection: A Comparison of Unsupervised Neural Network Architectures
    Siegel, Barry
    [J]. IEEE SENSORS LETTERS, 2020, 4 (08)