This paper presents a membrane computation error-minimized mixed-mode spiking neural network (SNN) crossbar array. Our approach involves implementing an embedded dummy switch scheme and a mid-node pre-charge scheme to construct a high-precision current-mode synapse. We effectively suppressed charge sharing between membrane capacitors and the parasitic capacitance of synapses that results in membrane computation error. A 400 x 20 SNN crossbar prototype chip is fabricated via a 28-nm FDSOI CMOS process, and 20 MNIST patterns with their sizes reduced to 20 x 20 pixels are successfully recognized under 411 mu W of power consumed. Moreover, the peak-to-peak deviation of the normalized output spike count measured from the 21 fabricated SNN prototype chips is within 16.5% from the ideal value, including sample-wise random variations.