Human-in-the-Loop Personalized Counterfactual Recourse

被引:0
|
作者
Abrate, Carlo [1 ,2 ]
Siciliano, Federico [1 ]
Bonchi, Francesco [2 ]
Silvestri, Fabrizio [1 ]
机构
[1] CENTAI, Turin, Italy
[2] Sapienza Univ Rome, Rome, Italy
关键词
Personalized Counterfactual; Algorithmic Recourse; Explainability;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new framework for generating counterfactual recourse in machine learning that embraces a "human-in-the-loop" approach by incorporating user preferences. Traditional counterfactual tools neglect individual user preferences when adjusting features. To address this, we tackle recourse generation as a multi-objective optimization problem, integrating conventional constraints with user preferences. Our framework, termed HIP-CORE, is specifically crafted to estimate these preferences during the counterfactual generation phase. We also introduce the "Personal Validity" as a measure of the effectiveness of recourse for individual users. Through extensive theoretical and empirical analysis, we validate the benefits of our proposal. Overall, this work enhances counterfactual reasoning and paves the way for more personalized algorithmic recourse. Code is available at https://github.com/federicosiciliano/hip-core.git.
引用
收藏
页码:18 / 38
页数:21
相关论文
共 50 条
  • [1] ERUDITE: Human-in-the-Loop IoT for an Adaptive Personalized Learning System
    Taherisadr, Mojtaba
    Al Faruque, Mohammad Abdullah
    Elmalaki, Salma
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14532 - 14550
  • [2] Human-in-the-Loop SLAM
    Nashed, Samer B.
    Biswas, Joydeep
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1503 - 1510
  • [3] Human-in-the-loop Learning for Personalized Diet Monitoring from Unstructured Mobile Data
    Hezarjaribi, Niloofar
    Mazrouee, Sepideh
    Hemati, Saied
    Chaytor, Naomi S.
    Perrigue, Martine
    Ghasemzadeh, Hassan
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2019, 9 (04)
  • [4] Human-in-the-Loop Mixup
    Collins, Katherine M.
    Bhatt, Umang
    Liu, Weiyang
    Piratla, Vihari
    Sucholutsky, Ilia
    Love, Bradley
    Weller, Adrian
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 454 - 464
  • [5] Human-in-the-Loop Insulin Dosing
    Bequette, B. Wayne
    [J]. JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2021, 15 (03): : 699 - 704
  • [6] Human-in-the-loop Data Integration
    Li, Guoliang
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (12): : 2006 - 2017
  • [7] Digital Human-in-the-Loop Framework
    Demirel, H. Onan
    [J]. DIGITAL HUMAN MODELING AND APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS AND RISK MANAGEMENT. POSTURE, MOTION AND HEALTH, DHM 2020, PT I, 2020, 12198 : 18 - 32
  • [8] Human-in-the-loop Augmented Mapping
    Sidaoui, Abbas
    Elhajj, Imad H.
    Asmar, Daniel
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3190 - 3195
  • [9] Web Engineering with Human-in-the-Loop
    Ustalov, Dmitry
    Pavlichenko, Nikita
    Tseytlin, Boris
    Baidakova, Daria
    Drutsa, Alexey
    [J]. WEB ENGINEERING (ICWE 2022), 2022, 13362 : 505 - 508
  • [10] Human-in-the-Loop Vehicle ReID
    Li, Zepeng
    Zhang, Dongxiang
    Shen, Yanyan
    Chen, Gang
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5, 2023, : 6048 - 6055