Early diagnosis of Alzheimer's Disease based on multi-attention mechanism

被引:1
|
作者
Yang, Xinli [1 ]
Hong, Kefen [2 ]
Zhang, Denghui [1 ]
Wang, Ke [1 ]
机构
[1] Zhejiang Shuren Univ, Coll Informat Technol, Hangzhou, Zhejiang, Peoples R China
[2] Huzhou Univ, Coll Informat Engn, Huzhou, Zhejiang, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
IMPAIRMENT;
D O I
10.1371/journal.pone.0310966
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's Disease is a neurodegenerative disorder, and one of its common and prominent early symptoms is language impairment. Therefore, early diagnosis of Alzheimer's Disease through speech and text information is of significant importance. However, the multimodal data is often complex and inconsistent, which leads to inadequate feature extraction. To address the problem, We propose a model for early diagnosis of Alzheimer's Disease based on multimodal attention(EDAMM). Specifically, we first evaluate and select three optimal feature extraction methods, Wav2Vec2.0, TF-IDF and Word2Vec, to extract acoustic and linguistic features. Next, by leveraging self-attention mechanism and cross-modal attention mechanisms, we generate fused features to enhance and capture the inter-modal correlation information. Finally, we concatenate the multimodal features into a composite feature vector and employ a Neural Network(NN) classifier to diagnose Alzheimer's Disease. To evaluate EDAMM, we perform experiments on two public datasets, i.e., NCMMSC2021 and ADReSSo. The results show that EDAMM improves the performance of Alzheimer's Disease diagnosis over state-of-the-art baseline approaches on both datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MDMA: Multimodal Data and Multi-attention Based Deep Learning Model for Alzheimer's Disease Diagnosis
    Ge, Chang
    Xu, Jianyu
    Hu, Jinyun
    Liu, Peishun
    Tang, Ruichun
    Wang, Jinyu
    Ren, Huyue
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 120 - 127
  • [2] Early Diagnosis of Alzheimer's Disease Based on Multimodal Hypergraph Attention Network
    Li, Yi
    Yang, BaoYao
    Pan, Dan
    Zeng, An
    Wu, Long
    Yang, Yang
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 192 - 197
  • [3] Stereo Matching Algorithm Based on Multi-Attention Mechanism
    Chen Qibo
    Ge Baozhen
    Li Yunpeng
    Quan Jianing
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [4] AMSF: attention-based multi-view slice fusion for early diagnosis of Alzheimer's disease
    Zhang, Yameng
    Peng, Shaokang
    Xue, Zhihua
    Zhao, Guohua
    Li, Qing
    Zhu, Zhiyuan
    Gao, Yufei
    Kong, Lingfei
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [5] Bearing Fault Diagnosis Using Convolutional Neural Network Based on a Multi-Attention Mechanism
    Kang T.
    Duan R.
    Yang L.
    Xue J.
    Liao Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (12): : 68 - 77
  • [6] Domain adaptation based on feature fusion and multi-attention mechanism*
    Wang, Tiansheng
    Liu, Zhonghua
    Ou, Weihua
    Huo, Hua
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [7] FACIAL EXPRESSION RECOGNITION ALGORITHM BASED ON MULTI-ATTENTION MECHANISM
    Wu, Huixin
    Huang, Zehuan
    Jiang, Wei
    Zhao, Xin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (04): : 1239 - 1250
  • [8] Siamese Tracking Network with Multi-attention Mechanism
    Xu, Yuzhuo
    Li, Ting
    Zhu, Bing
    Wang, Fasheng
    Sun, Fuming
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [9] Anaphora Resolution of Uyghur Personal Pronouns Based on Multi-attention Mechanism
    Yang Q.-M.
    Yu L.
    Tian S.-W.
    Wumaier A.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (06): : 1412 - 1421
  • [10] 3D convolutional neural networks with hybrid attention mechanism for early diagnosis of Alzheimer's disease
    Qin, Zhiwei
    Liu, Zhao
    Guo, Qihao
    Zhu, Ping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77