Metabolomics for early pancreatic cancer detection in plasma samples from a Swedish prospective population-based biobank

被引:2
|
作者
Borgmaestars, Emmy [1 ]
Jacobson, Sara [1 ]
Simm, Maja [1 ,2 ]
Johansson, Mattias [3 ]
Billing, Ola [1 ]
Lundin, Christina [1 ]
Nystroem, Hanna [1 ,4 ]
Oehlund, Daniel [4 ,5 ]
Lubovac-Pilav, Zelmina [6 ]
Jonsson, Paer [7 ]
Franklin, Oskar [1 ,8 ]
Sund, Malin [1 ,9 ,10 ]
机构
[1] Umea Univ, Dept Surg & Perioperat Sci Surg, Norrlands Univ Sjukhus 6M,M31, S-90185 Umea, Sweden
[2] Umea Univ, Dept Clin Sci Obstet & Gynecol, Umea, Sweden
[3] Int Agcy Res Canc, Genom Epidemiol Branch, Lyon, France
[4] Umea Univ, Wallenberg Ctr Mol Med, Umea, Sweden
[5] Umea Univ, Dept Radiat Sci Oncol, Umea, Sweden
[6] Univ Skovde, Dept Biol & Bioinformat, Skovde, Sweden
[7] Umea Univ, Dept Chem, S-ME3 Umea, Sweden
[8] Univ Colorado, Sch Med, Dept Surg, Div Surg Oncol, Aurora, CO USA
[9] Univ Helsinki, Dept Surg, Helsinki, Finland
[10] Helsinki Univ Hosp, Helsinki, Finland
基金
瑞典研究理事会;
关键词
Pancreatic neoplasms; biomarkers; risk; hyperglycemia; survival; BODY-MASS INDEX; DUCTAL ADENOCARCINOMA; BIOMARKER SIGNATURE; METABOLITES;
D O I
10.21037/jgo-23-930
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers. Methods: We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score. Results: Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1]. Conclusions: Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.
引用
收藏
页码:755 / +
页数:27
相关论文
共 50 条
  • [1] Plasma metabolomics of meat intake: a Swedish population-based study
    Arage, G.
    Dekkers, K.
    Ericson, U.
    Engel, H.
    Larsson, S.
    Baldanzi, G.
    Pertiwi, K.
    Lind, L.
    Sundstrom, J.
    Smith, J.
    Engstrom, G.
    Arnlov, J.
    Orho-Melander, M.
    Fall, T.
    Ahmad, S.
    DIABETOLOGIA, 2024, 67 : S150 - S150
  • [2] GENETIC RISK OF PANCREATIC CANCER IN AN UNSELECTED POPULATION-BASED BIOBANK
    Fine, Matthew E.
    Soper, Emily
    Belbin, Gillian M.
    Bobo, Dean
    Kenny, Eimear E.
    Lucas, Aimee L.
    Abul-Husn, Noura S.
    GASTROENTEROLOGY, 2020, 158 (06) : S528 - S528
  • [3] Nuclear magnetic resonance-based metabolomics and risk of pancreatic cancer: a prospective analysis in the UK Biobank
    Wu, Zelong
    Yang, Jiayu
    Ma, Zuyi
    Chen, Yubin
    Han, Mingqian
    Wu, Qianlong
    Hou, Baohua
    Huang, Shanzhou
    Zhang, Chuanzhao
    JOURNAL OF GASTROENTEROLOGY, 2025,
  • [4] A POPULATION-BASED, PROSPECTIVE METABOLOMICS STUDY IN THE UK BIOBANK IDENTIFIES GLYCOPROTEIN ACETYLS AS A NOVEL BIOMARKER OF INCIDENT GOUT
    Joshi, A.
    McCormick, N.
    Yokose, C.
    Lu, N.
    Choi, H.
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 108 - 108
  • [5] Social support and ovarian cancer incidence - A Swedish prospective population-based study
    Idahl, Annika
    Hermansson, Andrea
    Lalos, Ann
    GYNECOLOGIC ONCOLOGY, 2018, 149 (02) : 324 - 328
  • [6] EARLY DETECTION OF PANCREATIC CANCER USING SALIVARY METABOLOMICS
    Asai, Yasutsugu
    Itoi, Takao
    Sofuni, Atsushi
    Tsuchiya, Takayoshi
    Tanaka, Reina
    Tonozuka, Ryosuke
    Honjyo, Mitsuyoshi
    Mukai, Shuntaro
    Mitsuru, Fujita
    Yamamoto, Kenjiro
    Matsunami, Yukitoshi
    Kurosawa, Takashi
    Iwabuchi, Atsuhiro
    Sugimoto, Masahiro
    Sunamura, Makoto
    GASTROENTEROLOGY, 2018, 154 (06) : S517 - S518
  • [7] Population-based data from the Swedish Colon Cancer Registry
    Kodeda, K.
    Nathanaelsson, L.
    Jung, B.
    Olsson, H.
    Jestin, P.
    Sjovall, A.
    Glimelius, B.
    Pahlman, L.
    Syk, I.
    BRITISH JOURNAL OF SURGERY, 2013, 100 (08) : 1100 - 1107
  • [8] Search for Early Pancreatic Cancer Blood Biomarkers in Five European Prospective Population Biobanks Using Metabolomics
    Fest, Jesse
    Vijfhuizen, Lisanne S.
    Goeman, Jelle J.
    Veth, Olga
    Joensuu, Anni
    Perola, Markus
    Mannisto, Satu
    Ness-Jensen, Eivind
    Hveem, Kristian
    Haller, Toomas
    Tonisson, Neeme
    Mikkel, Kairit
    Metspalu, Andres
    van Duijn, Cornelia M.
    Ikram, Arfan
    Stricker, Bruno H.
    Ruiter, Rikje
    van Eijck, Casper H. J.
    van Ommen, Gert-Jan B.
    't Hoen, Peter A. C.
    ENDOCRINOLOGY, 2019, 160 (07) : 1731 - 1742
  • [9] Metabolic syndrome and risk of pancreatic cancer: A population-based prospective cohort study
    Xia, Bin
    He, Qiangsheng
    Pan, Yihang
    Gao, Fang
    Liu, Anran
    Tang, Yan
    Chong, Charing
    Teoh, Anthony Y. B.
    Li, Fangping
    He, Yulong
    Zhang, Changhua
    Yuan, Jinqiu
    INTERNATIONAL JOURNAL OF CANCER, 2020, 147 (12) : 3384 - 3393
  • [10] An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies
    Stancliffe, Ethan
    Schwaiger-Haber, Michaela
    Sindelar, Miriam
    Murphy, Matthew J.
    Soerensen, Mette
    Patti, Gary J.
    ANALYTICAL CHEMISTRY, 2022, 94 (50) : 17370 - 17378