Decoding the Biomimetic Mineralization of Metal-Organic Frameworks in Water

被引:0
|
作者
Lin, Shang-Wei [1 ]
Lam, Phuc Khanh [2 ]
Wu, Chin-Teng [1 ]
Su, Kuan-Hsuan [1 ]
Sung, Chi-Fang [1 ]
Huang, Sen-Ruo [1 ]
Chang, Je-Wei [3 ]
Shih, Orion [3 ]
Yeh, Yi-Qi [3 ]
Vo, Trung Hieu [4 ]
Tsao, Heng-Kwong [4 ]
Hsieh, Haw-Ting [5 ]
Jeng, U-Ser [3 ,6 ,7 ]
Shieh, Fa-Kuen [2 ]
Yang, Hsiao-Ching [1 ]
机构
[1] Fu Jen Catholic Univ, Dept Chem, New Taipei City 24205, Taiwan
[2] Natl Cent Univ, Dept Chem, Taoyuan 32001, Taiwan
[3] Natl Synchrotron Radiat Res Ctr, Hsinchu 300092, Taiwan
[4] Natl Cent Univ, Dept Chem & Mat Engn, Taoyuan 32001, Taiwan
[5] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[6] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 300044, Taiwan
[7] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 300044, Taiwan
关键词
proton transfer (PT); amine dual N-site; modulardynamics (MD) simulation; small- to wide-angle X-ray scattering(SWAXS); size focusing; polydispersity; early-stage nucleation; X-RAY-SCATTERING; SMALL-ANGLE; MOLECULAR-DYNAMICS; CRYSTAL NUCLEATION; EMBEDDING ENZYMES; PERFORMANCE; ZIF-8; TEMPERATURE; MORPHOLOGY; BEAMLINE;
D O I
10.1021/acsnano.4c07276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study unveils the "green" metal-organic framework (MOF) structuring mechanism by decoding proton transfer in water during ZIF-8 synthesis. Combining in situ small- to wide-angle X-ray scattering, multiscale simulations, and quantum calculations, we reveal that the ZIF-8 early-stage nucleation and crystallization process in aqueous solution unfolds in three distinct stages. In stage I, imidazole ligands replace water in zinc-water cages, triggering an "acidity flip" that promotes proton transfer. This leads to the assembly of structures from single zinc ions to 3D amorphous cluster nuclei. In stage II, amorphous nuclei undergo a critical transformation, evolving into crystalline nuclei and subsequently forming mesoscale-ordered structures and crystallites. The process proceeds until the amorphous precursors are completely consumed, with the transformation kinetics governed by an energy barrier that determines the rate-limiting step. In stage III, stable crystallite nanoparticles form in solution, characterized by a temperature-dependent thermal equilibrium of molecular interactions at the crystal-solution interface. Beyond these core advancements, we explore the influence of encapsulated pepsin and nonencapsulated lysozyme on ZIF-8 formation, finding that their amino acid proton transfer capacity and concentration influence the resulting biomolecule-MOF composite's shape and encapsulation efficiency. The findings contribute to understanding the molecular mechanisms behind biomimetic mineralization and have potential implications for engineering proteins within amorphous MOF nuclei as protein embryo growth sites.
引用
收藏
页码:25170 / 25182
页数:13
相关论文
共 50 条
  • [1] Biomimetic mineralization of metal-organic frameworks around polysaccharides
    Liang, Kang
    Wang, Ru
    Boutter, Manon
    Doherty, Cara M.
    Mulet, Xavier
    Richardson, Joseph J.
    [J]. CHEMICAL COMMUNICATIONS, 2017, 53 (07) : 1249 - 1252
  • [2] Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules
    Liang, Kang
    Ricco, Raffaele
    Doherty, Cara M.
    Styles, Mark J.
    Bell, Stephen
    Kirby, Nigel
    Mudie, Stephen
    Haylock, David
    Hill, Anita J.
    Doonan, Christian J.
    Falcaro, Paolo
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [3] Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules
    Kang Liang
    Raffaele Ricco
    Cara M. Doherty
    Mark J. Styles
    Stephen Bell
    Nigel Kirby
    Stephen Mudie
    David Haylock
    Anita J. Hill
    Christian J. Doonan
    Paolo Falcaro
    [J]. Nature Communications, 6
  • [4] Metal-Organic Frameworks as Biomimetic Catalysts
    Gu, Zhi-Yuan
    Park, Jihye
    Raiff, Aaron
    Wei, Zhangwen
    Zhou, Hong-Cai
    [J]. CHEMCATCHEM, 2014, 6 (01) : 67 - 75
  • [5] Metal-organic frameworks in biomimetic applications
    Xu, Ming
    Gu, Zhiyuan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [6] Biomimetic catalysis of metal-organic frameworks
    Chen, Yao
    Ma, Shengqian
    [J]. DALTON TRANSACTIONS, 2016, 45 (24) : 9744 - 9753
  • [7] Biomimetic metal-organic frameworks for biological applications
    Chen, Renzeng
    Chen, Xianheng
    Wang, Yuanbo
    Wang, Bo
    [J]. TRENDS IN CHEMISTRY, 2023, 5 (06): : 460 - 473
  • [8] A biomimetic tongue by photoluminescent metal-organic frameworks
    Lee, Tu
    Lee, Hung Lin
    Tsai, Meng Hsun
    Cheng, Shao-Liang
    Lee, Sheng-Wei
    Hu, Jung-Chih
    Chen, Lien-Tai
    [J]. BIOSENSORS & BIOELECTRONICS, 2013, 43 : 56 - 62
  • [9] Immobilization of urease in metal-organic frameworks via biomimetic mineralization and its application in urea degradation
    Liang, Xiao
    Li, Qing
    Shi, Zhiyuan
    Bai, Shaowei
    Li, Quanshun
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (08) : 2173 - 2180
  • [10] Biomimetic mineralization of nanoscale lanthanide metal-organic frameworks with thermo-sensitive polymer as organic ligands for solvent recognition and water detection
    Wei, Zhijie
    Ren, Lipei
    Xiao, Xingfang
    Zhang, Qian
    Huang, Jing
    Liu, Ruina
    Zhao, Sanping
    Xu, Weilin
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2019, 277 : 594 - 601