Optimal 1-Wasserstein distance for WGANs

被引:0
|
作者
Stephanovitch, Arthur [1 ]
Tanielian, Ugo [2 ]
Cadre, Benoit [3 ]
Klutchnikoff, Nicolas [3 ]
Biau, Gerard [4 ]
机构
[1] Univ Paris Cite, CNRS, LPSM, F-75013 Paris, France
[2] Criteo AI Lab, Paris, France
[3] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[4] Sorbonne Univ, CNRS, LPSM, F-75005 Paris, France
关键词
Optimal distribution; optimal transport theory; rate of convergence; shortest path; Wasserstein distance; Wasserstein Generative Adversarial Networks; SEQUENCE;
D O I
10.3150/23-BEJ1701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The mathematical forces at work behind Generative Adversarial Networks raise challenging theoretical issues. Motivated by the important question of characterizing the geometrical properties of the generated distributions, we provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and asymptotic regimes. We study the specific case where the latent space is univariate and derive results valid regardless of the dimension of the output space. We show in particular that for a fixed sample size, the optimal WGANs are closely linked with connected paths minimizing the sum of the squared Euclidean distances between the sample points. We also highlight the fact that WGANs are able to approach (for the 1-Wasserstein distance) the target distribution as the sample size tends to infinity, at a given convergence rate and provided the family of generative Lipschitz functions grows appropriately. We derive in passing new results on optimal transport theory in the semi-discrete setting.
引用
收藏
页码:2955 / 2978
页数:24
相关论文
共 50 条