Improving lithium-sulfur battery performance by protecting lithium anode with Li2S

被引:0
|
作者
Sun, Yu [1 ,2 ]
Zhang, Ting [1 ,2 ]
Ai, Guo [1 ,2 ]
Luo, Birong [1 ,2 ]
Li, Dejun [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Tianjin Normal Univ, Coll Phys & Mat Sci, Energy & Mat Engn Ctr, Tianjin 300387, Peoples R China
[2] Tianjin Int Joint Res Ctr Surface Technol Energy S, Tianjin 300387, Peoples R China
关键词
Li2S; Coating; Lithium sulfur batteries; Lithium anode; SOLID-ELECTROLYTE INTERPHASE; NITRILE END-GROUPS; METAL ANODE; CYCLE PERFORMANCE; S BATTERY; SILICON; DISILOXANE; LAYER;
D O I
10.1007/s11581-024-05763-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur batteries have become a research hotspot in the field of energy storage due to their high capacity and low cost. However, lithium metal anodes' short cycle life and safety performance severely limit their commercial application. Here, we used an "in situ" method to form a stable artificial solid electrolyte interface on the surface of the metal lithium, which can control the electrochemical behavior of the interface between the lithium metal and the electrolyte and inhibit the growth of lithium dendrites. The electrochemical performance of lithium-sulfur batteries with protected lithium anode is greatly enhanced. The discharge capacity remains at 1519.6 mAhg(-1) after 100 cycles at 0.1 C. In addition, the rate capability of lithium-sulfur batteries is also significantly improved, delivering a reversible capacity of 685.7 mAh g(-1) at 0.5 C.
引用
收藏
页码:6017 / 6024
页数:8
相关论文
共 50 条
  • [1] Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
    Wu, Feixiang
    Magasinski, Alexandre
    Yushin, Gleb
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 6064 - 6070
  • [2] Activating Li2S as the Lithium-Containing Cathode in Lithium-Sulfur Batteries
    Ye, Hualin
    Li, Matthew
    Liu, Tongchao
    Li, Yanguang
    Lu, Jun
    [J]. ACS ENERGY LETTERS, 2020, 5 (07): : 2234 - 2245
  • [3] Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries
    Fan, Frank Y.
    Carter, W. Craig
    Chiang, Yet-Ming
    [J]. ADVANCED MATERIALS, 2015, 27 (35) : 5203 - 5209
  • [4] High-performance lithium-sulfur batteries enabled by regulating Li2S deposition
    Lin, Qiaowei
    Huang, Ling
    Liu, Wenhua
    Li, Zejian
    Fang, Ruopian
    Wang, Da-Wei
    Yang, Quan-Hong
    Lv, Wei
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (38) : 21385 - 21398
  • [5] Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries
    Zu, Chenxi
    Klein, Michael
    Manthiram, Arumugam
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (22): : 3986 - 3991
  • [6] Advanced engineering strategies for Li2S cathodes in lithium-sulfur batteries
    Gao, Guowei
    Yang, Xiaochen
    Bi, Jingxuan
    Guan, Wanqing
    Du, Zhuzhu
    Ai, Wei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (48) : 26318 - 26339
  • [7] Regulating Li2S Deposition by Ostwald Ripening in Lithium-Sulfur Batteries
    Wang, Shuai
    Huang, Fanyang
    Li, Xinpeng
    Li, Wanxia
    Chen, Yawei
    Tang, Xin
    Jiao, Shuhong
    Cao, Ruiguo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4204 - 4210
  • [8] Redox mediators control electrodeposition of Li2S in lithium-sulfur batteries
    Gerber, Laura
    Frischmann, Peter
    Fan, Frank
    Doris, Sean
    Qu, Xiaohui
    Scheuermann, Angelique
    Persson, Kristin
    Chiang, Yet-Ming
    Helms, Brett
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [9] Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation
    Ren, Y. X.
    Zhao, T. S.
    Liu, M.
    Tan, P.
    Zeng, Y. K.
    [J]. JOURNAL OF POWER SOURCES, 2016, 336 : 115 - 125
  • [10] The presolvation strategy of Li2S cathodes for lithium-sulfur batteries: a review
    Xiang, Jianglu
    Zhao, Yuwei
    Wang, Lin
    Zha, Chenyang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10326 - 10341