Mechanism of multistability in chaotic maps

被引:0
|
作者
Liu, Jin [1 ]
Sun, Kehui [1 ]
Wang, Huihai [2 ]
机构
[1] Cent South Univ, Sch Phys, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Elect Informat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
STOCHASTIC RESONANCE; DIFFUSION; SYSTEMS; THRESHOLDS; DYNAMICS; LATTICE; STATES;
D O I
10.1063/5.0219361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research aims to investigate the mechanisms of multistability in chaotic maps. The study commences by examining the fundamental principles governing the development of homogeneous multistability using a basic one-dimensional chain-climbing map. Findings suggest that the phase space can be segmented into distinct uniform mediums where particles exhibit consistent movement. As critical parameter values are reached, channels emerge between these mediums, resulting in deterministic chaotic diffusion. Additionally, the study delves into the topic of introducing heterogeneous factors on the formation of heterogeneous multistability in the one-dimensional map. A thorough examination of phenomena such as multistate intermittency highlights the intimate connection between specific phase transition occurrences and channel formation. Finally, by analyzing two instances-a memristive chaotic map and a hyperchaotic map-the underlying factors contributing to the emergence of multistability are scrutinized. This study offers an alternative perspective for verifying the fundamental principles of homogenous and heterogeneous multistability in complex high-dimensional chaotic maps.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multistability in symmetric chaotic systems
    Li, C.
    Hu, W.
    Sprott, J. C.
    Wang, X.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08): : 1493 - 1506
  • [2] Controlling Multistability in Chaotic Systems
    Geltrude, A.
    Al-Naimee, K.
    Euzzor, S.
    Meucci, R.
    Arecchi, F. T.
    Goswami, B. K.
    2010 COMPLEXITY IN ENGINEERING: COMPENG 2010, PROCEEDINGS, 2010, : 112 - 114
  • [3] Multistability in symmetric chaotic systems
    C. Li
    W. Hu
    J. C. Sprott
    X. Wang
    The European Physical Journal Special Topics, 2015, 224 : 1493 - 1506
  • [4] Phase multistability and mutual chaotic synchronization
    Balanov, AG
    Sosnovtseva, OV
    Vadivasova, TE
    Postnov, DE
    Astakhov, VV
    Mosekilde, E
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 232 - 237
  • [5] Authenticated RFID security mechanism based on chaotic maps
    Cheng, Zi-Yao
    Liu, Yun
    Chang, Chin-Chen
    Chang, Shih-Chang
    SECURITY AND COMMUNICATION NETWORKS, 2013, 6 (02) : 247 - 256
  • [6] Phase multistability of synchronous chaotic oscillations
    Vadivasova, TE
    Sosnovtseva, OV
    Balanov, AG
    Astakhov, VV
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) : 231 - 243
  • [7] Extreme events and multistability in nonhyperbolic chaotic system
    Vijay, S. Dinesh
    Thamilmaran, K.
    Ahamed, A. Ishaq
    NONLINEAR DYNAMICS, 2024, 112 (02) : 1431 - 1438
  • [8] Role of multistability in the transition to chaotic phase synchronization
    Postnov, DE
    Vadivasova, TE
    Sosnovtseva, OV
    Balanov, AG
    Anishchenko, VS
    Mosekilde, E
    CHAOS, 1999, 9 (01) : 227 - 232
  • [9] Feedback control of bursting and multistability in chaotic systems
    Geltrude, Andrea
    Al Naimee, Kais
    Euzzor, Stefano
    Meucci, Riccardo
    Arecchi, Fortunato Tito
    Goswami, Binoy Krishna
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 3031 - 3039
  • [10] Secure chaotic communication based on extreme multistability
    Pisarchik, A. N.
    Jaimes-Reategui, R.
    Rodriguez-Flores, C.
    Garcia-Lopez, J. H.
    Huerta-Cuellar, G.
    Martin-Pasquin, F. J.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (04): : 2561 - 2575