Knockout of the Bread Wheat CER9/SUD1 Gene Using CRISPR/Cas Technology

被引:0
|
作者
Musin, Khalit [1 ]
Mikhaylova, Elena [1 ]
Galimova, Aizilya [1 ]
Baimukhametova, Elvina [1 ]
Zaikina, Evgenia [1 ]
Kuluev, Azat [1 ]
Ibragimova, Zarina [1 ]
Rakhmatullina, Irina [1 ]
Berezhneva, Zoya [1 ]
Kuluev, Bulat [1 ]
机构
[1] RAS, Inst Biochem & Genet, Ufa Fed Res Ctr, 71 Pr Oktyabrya, Ufa 450054, Russia
关键词
Triticum aestivum; Eceriferum; Epicuticular wax; Drought tolerance; Agrobacterium-mediated transformation; Genome-edited plants; E3 UBIQUITIN LIGASE; INFLORESCENCE STEMS; ECERIFERUM MUTANTS; WAX;
D O I
10.1007/s11105-024-01495-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the CER9 gene of Arabidopsis thaliana L. contribute to the amplification of the cuticular wax and consequently mitigation of water loss, thereby fortifying drought resilience. Recently, genes homologous to CER9, termed SUD1 genes, have been annotated in bread wheat (Triticum aestivum L.). However, no research has been done on these genes in T. aestivum. Hence, our study aimed to employ CRISPR/Cas technology to knock out the CER9/SUD1 gene orthologs in bread wheat. For this, five guide RNAs were meticulously chosen and merged into a singular vector. Delivery of the CRISPR/Cas components was arranged through Agrobacterium tumefaciens, utilized for transforming immature embryos of two agricultural spring bread wheat varieties: Taya and Sigma. Among the 13 transgenic plants procured, four manifested positivity for the reporter gene GFP and Cas9 gene. Notably, substantial deletions ranging from 284 to 398 bp within the CER9/SUD1 gene were discerned in these plants. Additionally, two of the edited plants exhibited an absence of CER9/SUD1 transcripts, while the other two displayed a noteworthy 5.4-fold reduction in CER9/SUD1 gene expression compared to the wild type. Intriguingly, the genome-edited plants of the T1 generation showcased enhanced growth parameters compared to the wild type under both standard and drought conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generation of Gene Exon Knockout Mice Using CRISPR/Cas9 Technology
    Liu, Y.
    Zhang, X. P.
    Wang, L. Y.
    Du, J.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2016, 64 : S378 - S378
  • [2] Guidelines for optimized gene knockout using CRISPR/Cas9
    Van Campenhout, Claude
    Cabochette, Pauline
    Veillard, Anne-Clemence
    Laczik, Miklos
    Zelisko-Schmidt, Agnieszka
    Sabatel, Celine
    Dhainaut, Maxime
    Vanhollebeke, Benoit
    Gueydan, Cyril
    Kruys, Veronique
    BIOTECHNIQUES, 2019, 66 (06) : 295 - 302
  • [3] Production of gene knockout fish using TALEN and CRISPR/Cas9
    Suzuki, Tohru
    NIPPON SUISAN GAKKAISHI, 2015, 81 (05) : 884 - 884
  • [4] Efficient Gene Knockout in Goats Using CRISPR/Cas9 System
    Ni, Wei
    Qiao, Jun
    Hu, Shengwei
    Zhao, Xinxia
    Regouski, Misha
    Yang, Min
    Polejaeva, Irina A.
    Chen, Chuangfu
    PLOS ONE, 2014, 9 (09):
  • [5] Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans
    Chen, Xiangyang
    Li, Mu
    Feng, Xuezhu
    Guang, Shouhong
    GENETICS, 2015, 201 (04) : 1295 - +
  • [6] Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans
    Xiangyang Chen
    Fei Xu
    Chengming Zhu
    Jiaojiao Ji
    Xufei Zhou
    Xuezhu Feng
    Shouhong Guang
    Scientific Reports, 4
  • [7] Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans
    Chen, Xiangyang
    Xu, Fei
    Zhu, Chengming
    Ji, Jiaojiao
    Zhou, Xufei
    Feng, Xuezhu
    Guang, Shouhong
    SCIENTIFIC REPORTS, 2014, 4
  • [8] CRISPR-Cas9-induced gene knockout in zebrafish
    Medishetti, Raghavender
    Balamurugan, Keerthana
    Yadavalli, Krishnaveni
    Rani, Rita
    Sevilimedu, Aarti
    Challa, Anil Kumar
    Parsa, Kishore
    Chatti, Kiranam
    STAR PROTOCOLS, 2022, 3 (04):
  • [9] Generating inducible Knockout models of Cancer using CRISPR-Cas9 technology
    Laprano, N.
    Stevenson, D.
    Ghaffar, F.
    Cadalbert, L.
    Bryson, S.
    Warrander, F.
    Strathdee, D.
    TRANSGENIC RESEARCH, 2016, 25 (02) : 244 - 244
  • [10] FEASIBILITY OF GENE KNOCKOUT IN HUMAN SPERM CELLS USING CRISPR-CAS9
    Choi, D.
    Cheung, S.
    Xie, P.
    Parrella, A.
    Rosenwaks, Z.
    Palermo, G. D.
    FERTILITY AND STERILITY, 2018, 110 (04) : E301 - E301