Ferroelectric polarization in Bi0.9Dy0.1FeO3/g-C3N4 Z-scheme heterojunction boosts photocatalytic hydrogen evolution

被引:11
|
作者
Yao, Qifu [1 ,2 ]
Liu, Ping [1 ,2 ]
Yang, Fei [1 ,2 ]
Zhu, Yilin [1 ,2 ]
Pan, Yagang [1 ,2 ]
Xue, Hongtao [1 ,2 ]
Mao, Weiwei [1 ,2 ]
Chu, Liang [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Prov Engn Res Ctr Low Dimens Phys & New En, Nanjing 210023, Peoples R China
[3] Hangzhou Dianzi Univ, Inst Carbon Neutral & New Energy, Sch Elect & Informat, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-scheme; ferroelectric polarization; photocatalytic degradation; hydrogen evolution; WATER; EFFICIENT;
D O I
10.1007/s40843-024-3036-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Delivering excellent carrier separation through ferroelectric polarization is desirable to achieve effective solar hydrogen conversion. Here, Bi0.9Dy0.1FeO3/g-C3N4 (BDFO/GCN) Z-scheme photocatalyst was constructed by loading BDFO nanoparticles onto sheet-like GCN, in which BiFeO3 (BFO) was doped with the rare-earth element Dy to narrow the optical bandgap and enhance the ferroelectric property. Residual polarization effectively promoted the separation and transport of photo-generated carriers in BFO, and the Z-scheme exhibited stable reaction activity during photocatalytic degradation and photocatalytic hydrogen evolution. Through electric polarization, the heterojunction photocatalyst achieves 100% degradation of Rhodamine B (RhB) under simulated sunlight. The evolution rate of hydrogen was improved from approximately 742.5 to 1084.0 mu mol<middle dot>g(-1)<middle dot>h(-1) after polarization. This remarkable activity is attributed to the improved carrier separation facilitated by the internal polarization field. This work offers novel insights into the rational design of efficient ferroelectric photocatalysts.
引用
收藏
页码:3160 / 3167
页数:8
相关论文
共 50 条
  • [1] Z-scheme heterojunction of Bi2S3/g-C3N4 and its photocatalytic effect
    Meng, Yachu
    Li, Yuzhen
    Xia, Yunsheng
    Chen, Wenjun
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 29 (02) : 128 - 138
  • [2] Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production
    You, Yong
    Wang, Shuobo
    Xiao, Ke
    Ma, Tianyi
    Zhang, Yihe
    Huang, Hongwei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16219 - 16227
  • [3] Photocatalytic hydrogen evolution and tetracycline degradation over a novel Z-scheme Ni-MOF/g-C3N4 heterojunction
    Zhang, Lingyi
    Wu, Jiachun
    Xu, Hongyun
    Li, Huixia
    Liu, Xiang
    Song, Yanhua
    Cui, Yanjuan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 686
  • [4] Z-scheme g-C3N4/ZnO heterojunction decorated by Au nanoparticles for enhanced photocatalytic hydrogen production
    Ge, Wen
    Liu, Kong
    Deng, Shukang
    Yang, Peizhi
    Shen, Lanxian
    APPLIED SURFACE SCIENCE, 2023, 607
  • [5] Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction
    Sepahvand, Hadis
    Sharifnia, Shahram
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (42) : 23658 - 23668
  • [6] Constructing a Z-scheme (3-Bi2O3/g-C3N4 heterojunction with enhancing photocatalytic activity for sulfamethoxypyridazine degradation
    Zeng, Xiaolan
    Wang, Xueli
    Shu, Shuang
    Zhang, Rongwei
    Chen, Jiahui
    Wang, Yan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 189
  • [7] Z-scheme Fe2O3/g-C3N4 heterojunction with excellent photocatalytic property
    Zhang, Jian
    Jiang, Xinyu
    Gong, Mingkai
    Zheng, Yiqun
    JOURNAL OF PHOTONICS FOR ENERGY, 2020, 10 (02)
  • [8] Ferroelectric polarization significantly enhances the photocatalytic performance of Bi2Fe4O9/RGO/nitrogen-deficient g-C3N4 Z-scheme heterojunction
    Liang, Xing
    Jin, Yunze
    Jiang, Guojian
    Li, Guorong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [9] Cd-doped g-C3N4/Ag2S/Ag Z-scheme heterojunction for efficient photocatalytic hydrogen evolution
    Zhang, Hantao
    Liang, Yunxia
    Huang, Yanbing
    Zhang, Jian
    Zhang, Jinshan
    Hu, Bingxing
    Ge, Guixian
    Liu, Jichang
    Bao, Fuxi
    FUEL, 2025, 389
  • [10] NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline
    Wu, Jiao
    Hu, Jingyu
    Qian, Honghong
    Li, Jianjun
    Yang, Ran
    Qu, Lingbo
    DIAMOND AND RELATED MATERIALS, 2022, 121