共 27 条
Improving Asphalt Binder Durability Using Sustainable Materials: A Rheological and Chemical Analysis of Polymer-, Rubber-, and Epoxy-Modified Asphalt Binders
被引:0
|作者:
Abualia, Anas
[1
]
Akentuna, Moses
[2
]
Mohammad, Louay N.
[1
]
Cooper III, Samuel B.
[2
]
Cooper Jr, Samuel B.
[2
]
机构:
[1] Louisiana State Univ, Dept Civil & Environm Engn, Baton Rouge, LA 70803 USA
[2] Louisiana Transportat Res Ctr, Louisiana Dept Transportat & Dev, 4101 Gourrier Ave, Baton Rouge, LA 70808 USA
关键词:
sustainable and resilient infrastructure;
recycled crumb rubber;
epoxy asphalt;
asphalt binder durability;
polymer-modified asphalt binder;
SBS MODIFIED ASPHALT;
CRUMB RUBBER;
PERFORMANCE;
MIXTURE;
D O I:
10.3390/su16135379
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
When exposed to sun radiation and heat, asphalt binders age, resulting in reduced flexibility, cracking, and pavement failure. Given the increasing demands of traffic, environmental concerns, and resource scarcity, highway agencies and researchers are actively seeking solutions that meet performance requirements and demonstrate awareness of using non-renewable resources. Epoxy asphalt (EA) promotes sustainability concepts due to its production at significantly lower mixing and compaction temperatures, enhanced durability, improved serviceability, reduced maintenance needs, and successful recycling and reuse in hot asphalt mixtures. Crumb rubber, a widely recognized recycled waste tire material, is considered a viable option for promoting sustainability and enhancing asphalt binder properties. This study aims to enhance the durability and long-term performance of asphalt binders by utilizing sustainable materials. Six types of asphalt binders were employed: PG 67-22 base asphalt binder; styrene-butadiene-styrene (SBS)-modified PG 76-22 and PG 88-22H (3.5% and 7.0% dosage rates, respectively); a hybrid PG 76-22CS-modified asphalt binder prepared with SBS and crumb rubber modifiers; and 25EAB and 50EAB epoxy-modified asphalt binders prepared at 25 and 50% dosage rates, respectively. Results indicate that the sustainable asphalt binders PG 76-22CS, 25EAB, and 50EAB demonstrated comparable or superior performance compared to SBS-modified asphalt binders, as measured by rutting and fatigue factors. Additionally, epoxy asphalt binders had better anti-aging and cracking resistance, as shown by the outcomes of Fourier-transform infrared spectroscopy and linear amplitude sweep tests, respectively. This study contributes valuable insights into the potential of sustainable materials to enhance the overall performance and resilience of asphalt binders.
引用
收藏
页数:19
相关论文