A low-dimensional approximation of optimal confidence

被引:0
|
作者
Le Denmat, Pierre [1 ]
Verguts, Tom [2 ]
Desender, Kobe [1 ]
机构
[1] Katholieke Univ Leuven, Brain & Cognit, Leuven, Belgium
[2] Univ Ghent, Dept Expt Psychol, Ghent, Belgium
关键词
BAYESIAN MODEL SELECTION; DECISION; FEEDBACK; METACOGNITION; CHOICE; DISCRIMINATION; INTEGRATION; FRAMEWORK; ACCURACY;
D O I
10.1371/journal.pcbi.1012273
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Human decision making is accompanied by a sense of confidence. According to Bayesian decision theory, confidence reflects the learned probability of making a correct response, given available data (e.g., accumulated stimulus evidence and response time). Although optimal, independently learning these probabilities for all possible data combinations is computationally intractable. Here, we describe a novel model of confidence implementing a low-dimensional approximation of this optimal yet intractable solution. This model allows efficient estimation of confidence, while at the same time accounting for idiosyncrasies, different kinds of biases and deviation from the optimal probability correct. Our model dissociates confidence biases resulting from the estimate of the reliability of evidence by individuals (captured by parameter alpha), from confidence biases resulting from general stimulus independent under and overconfidence (captured by parameter beta). We provide empirical evidence that this model accurately fits both choice data (accuracy, response time) and trial-by-trial confidence ratings simultaneously. Finally, we test and empirically validate two novel predictions of the model, namely that 1) changes in confidence can be independent of performance and 2) selectively manipulating each parameter of our model leads to distinct patterns of confidence judgments. As a tractable and flexible account of the computation of confidence, our model offers a clear framework to interpret and further resolve different forms of confidence biases. Mathematical and computational work has shown that in order to optimize decision making, humans and other adaptive agents must compute confidence in their perception and actions. Currently, it remains unknown how this confidence is computed. We demonstrate how humans can approximate confidence in a tractable manner. Our computational model makes novel predictions about when confidence will be biased (e.g., over- or underconfidence due to selective environmental feedback). We empirically tested these predictions in a novel experimental paradigm, by providing continuous model-based feedback. We observed that different feedback manipulations elicited distinct patterns of confidence judgments, in ways predicted by the model. Overall, we offer a framework to both interpret optimal confidence and resolve confidence biases that characterize several psychiatric disorders.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A low-dimensional approximation of optimal confidence
    Le Denmat, Pierre
    Verguts, Tom
    Desender, Kobe
    PERCEPTION, 2022, 51 : 6 - 7
  • [2] Clustering with Confidence: A Low-Dimensional Binning Approach
    Nugent, Rebecca
    Stuetzle, Werner
    CLASSIFICATION AS A TOOL FOR RESEARCH, 2010, : 117 - 125
  • [3] OPTIMAL LOW-DIMENSIONAL DYNAMIC APPROXIMATIONS
    SIROVICH, L
    KNIGHT, BW
    RODRIGUEZ, JD
    QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (03) : 535 - 548
  • [4] Optimal Permutation Routing for Low-dimensional Hypercubes
    Laing, Ambrose K.
    Krumme, David W.
    NETWORKS, 2010, 55 (02) : 149 - 167
  • [5] Monochrome Multitone Image Approximation with Low-dimensional Palette
    Neydorf, R. A.
    Aghajanyan, A. G.
    Vucinic, D.
    PROCEEDINGS OF 2016 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS), 2016,
  • [6] Approximation Algorithms for Low-Distortion Embeddings Into Low-Dimensional Spaces
    Badoiu, Mihai
    Dhamdhere, Kedar
    Gupta, Anupam
    Rabinovich, Yuri
    Raecke, Harald
    Ravi, R.
    Sidiropoulos, Anastasios
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 119 - 128
  • [7] APPROXIMATION ALGORITHMS FOR LOW-DISTORTION EMBEDDINGS INTO LOW-DIMENSIONAL SPACES
    Sidiropoulos, Anastasios
    Badoiu, Mihai
    Dhamdhere, Kedar
    Gupta, Anupam
    Indyk, Piotr
    Rabinovich, Yuri
    Racke, Harald
    Ravi, R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 454 - 473
  • [8] Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
    Subbotin, Yu N.
    Baidakova, N., V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 261 - 269
  • [9] A theory of optimal convex regularization for low-dimensional recovery
    Traonmilin, Yann
    Gribonval, Remi
    Vaiter, Samuel
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2024, 13 (02)
  • [10] Accurate low-dimensional approximation of the linear dynamics of fluid flow
    Farrell, BF
    Ioannou, PJ
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2001, 58 (18) : 2771 - 2789