For a class of robustly transitive diffeomorphisms on ${\mathbb T}<^>4$ introduced by Shub [Topologically transitive diffeomorphisms of $T<^>4$ . Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture notes in Mathematics, 206). Ed. D. Chillingworth. Springer, Berlin, 1971, pp. 39-40], satisfying an additional bunching condition, we show that there exists a $C<^>2$ open and $C<^>r$ dense subset ${\mathcal U}<^>r$ , $2\leq r\leq \infty $ , such that any two hyperbolic points of $g\in {\mathcal U}<^>r$ with stable index $2$ are homoclinically related. As a consequence, every $g\in {\mathcal U}<^>r$ admits a unique homoclinic class associated to the hyperbolic periodic points with index $2$ , and this homoclinic class coincides with the whole ambient manifold. Moreover, every $g\in {\mathcal U}<^>r$ admits at most one measure of maximal entropy, and every $g\in {\mathcal U}<^>{\infty }$ admits a unique measure of maximal entropy.
机构:
Sun Microsystems, Inc., UMPK16-304, 901 San Antonio Road, Palo Alto, CA 94303-4900, United StatesSun Microsystems, Inc., UMPK16-304, 901 San Antonio Road, Palo Alto, CA 94303-4900, United States
Loh, Eugene
William, Walster, G.
论文数: 0引用数: 0
h-index: 0
机构:
Sun Microsystems, Inc., UMPK16-304, 901 San Antonio Road, Palo Alto, CA 94303-4900, United StatesSun Microsystems, Inc., UMPK16-304, 901 San Antonio Road, Palo Alto, CA 94303-4900, United States
机构:
Departamento de Matemática, Universidade Federal do Ceará, Ceará, Fortaleza,60440-900, BrazilDepartamento de Matemática, Universidade Federal do Ceará, Ceará, Fortaleza,60440-900, Brazil
Fernandes, Filipe
Jelonek, Zbigniew
论文数: 0引用数: 0
h-index: 0
机构:
Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, Warszawa,00-656, Poland
Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, CE, Fortaleza,60440-900, BrazilDepartamento de Matemática, Universidade Federal do Ceará, Ceará, Fortaleza,60440-900, Brazil