Shub's example revisited

被引:0
|
作者
Liang, Chao [1 ]
Saghin, Radu [2 ]
Yang, Fan [3 ]
Yang, Jiagang [4 ]
机构
[1] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
[2] Pontificia Univ Catolica Valparaiso, Inst Matemat, Blanco Viel 596, Valparaiso, Chile
[3] Wake Forest Univ, Dept Math, Winston Salem, NC USA
[4] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, Niteroi, Brazil
关键词
partially hyperbolic diffeomorphisms; homoclinic classes; equilibrium states; HYPERBOLIC DIFFEOMORPHISMS; HOMOCLINIC TANGENCIES; EQUILIBRIUM STATES; ENTROPY;
D O I
10.1017/etds.2024.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of robustly transitive diffeomorphisms on ${\mathbb T}<^>4$ introduced by Shub [Topologically transitive diffeomorphisms of $T<^>4$ . Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture notes in Mathematics, 206). Ed. D. Chillingworth. Springer, Berlin, 1971, pp. 39-40], satisfying an additional bunching condition, we show that there exists a $C<^>2$ open and $C<^>r$ dense subset ${\mathcal U}<^>r$ , $2\leq r\leq \infty $ , such that any two hyperbolic points of $g\in {\mathcal U}<^>r$ with stable index $2$ are homoclinically related. As a consequence, every $g\in {\mathcal U}<^>r$ admits a unique homoclinic class associated to the hyperbolic periodic points with index $2$ , and this homoclinic class coincides with the whole ambient manifold. Moreover, every $g\in {\mathcal U}<^>r$ admits at most one measure of maximal entropy, and every $g\in {\mathcal U}<^>{\infty }$ admits a unique measure of maximal entropy.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Rump's example revisited
    Loh, Eugene
    William, Walster, G.
    [J]. Reliable Computing, 2002, 8 (03) : 245 - 248
  • [2] Cook, Kannan and Schrijver's example revisited
    Li, Yanjun
    Richard, Jean-Philippe P.
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (04) : 724 - 734
  • [3] Shub's conjecture for smooth longitudinal maps of S m
    Graff, Grzegorz
    Misiurewicz, Michal
    Nowak-Przygodzki, Piotr
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (07) : 1044 - 1054
  • [4] THE PINCHUK EXAMPLE REVISITED
    Fernandes, Filipe
    Jelonek, Zbigniew
    [J]. arXiv, 2023,
  • [5] BECKMANN'S EDGEWORTH-BERTRAND DUOPOLY EXAMPLE REVISITED
    Cheviakov, Alexei F.
    Hartwick, John M.
    [J]. INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (04) : 461 - 472
  • [6] PINSON,KOPPEL,SHUB
    不详
    [J]. JEWISH SOCIAL STUDIES, 1961, 23 (03) : 137 - 137
  • [7] ARISTOTLE EXAMPLE REVISITED + RHETORIC
    HAUSER, GA
    [J]. PHILOSOPHY AND RHETORIC, 1985, 18 (03) : 171 - 180
  • [8] RUSSIAN POLITICAL FIGURES FROM 1850S TO 1920S - SHUB,D
    CRITCHLOW, J
    [J]. PROBLEMS OF COMMUNISM, 1970, 19 (02): : 35 - 35
  • [9] Arias, with Wolfe and Shub
    Stephenson, Shelby
    [J]. THOMAS WOLFE REVIEW, 2021, 42-43 (1-2): : 162 - 162
  • [10] Stratonovich stochastic differential equation with irregular coefficients: Girsanov's example revisited
    Pavlyukevich, Ilya
    Shevchenko, Georgiy
    [J]. BERNOULLI, 2020, 26 (02) : 1381 - 1409