Developing an ensemble machine learning study: Insights from a multi-center proof-of-concept study

被引:0
|
作者
Fanizzi, Annarita [1 ]
Fadda, Federico [1 ]
Maddalo, Michele [2 ]
Saponaro, Sara [3 ]
Lorenzon, Leda [4 ]
Ubaldi, Leonardo [5 ,6 ]
Lambri, Nicola [7 ,8 ]
Giuliano, Alessia [9 ]
Loi, Emiliano [10 ]
Signoriello, Michele [11 ]
Branchini, Marco [12 ]
Belmonte, Gina [3 ]
Giannelli, Marco [9 ]
Mancosu, Pietro [7 ]
Talamonti, Cinzia [5 ,6 ]
Iori, Mauro [13 ]
Tangaro, Sabina [14 ]
Avanzo, Michele [15 ]
Massafra, Raffaella [1 ]
机构
[1] IRCCS Ist Tumori Giovanni Paolo II, Lab Biostat & Bioinformat, Bari, Italy
[2] Azienda Osped Univ Parma, Serv Fis Sanit, Parma, Italy
[3] Azienda Usl Toscana Nord Ovest, Fis Sanit, Lucca, Italy
[4] Azienda Sanit Alto Adige, Fis Sanit, Bolzano, Italy
[5] Univ Firenze, Dip Sci Biomed Sperimentali & Clin Mario Serio, Viale Morgagni, Florence, Italy
[6] Ist Nazl Fis Nucleare, Sez Firenze, Via Sansone 1, Florence, Italy
[7] IRCCS Humanitas Res Hosp, Med Phys Unit Radiotherapy & Radiosurg Dept, Via Manzoni, Milan, Italy
[8] Humanitas Univ, Dept Biomed Sci, Via R Levi Montalcini, Milan, Italy
[9] Azienda Osped Univ Pisana, UOC Fis Sanit, Pisa, Italy
[10] IRCCS Ist Romagnolo Studio Tumori IRST Dino Amado, SC Fis Sanit, Meldola, Italy
[11] Azienda Sanit Univ Giuliano Isontina, Fis Sanit, Trieste, Italy
[12] Azienda Socio Sanit Territoriale Valtellina & Alt, Fis Sanit, Sondrio, Italy
[13] Azienda USL IRCCS Reggio Emilia, Med Phys Unit, Reggio Emilia, Italy
[14] Univ Bari Aldo Moro, Dipartimento Fis Applicata, Bari, Italy
[15] IRCCS, Ctr Riferimento Oncol Aviano CRO, Via F Gallini, Aviano, Italy
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
ARTIFICIAL-INTELLIGENCE; CLASSIFICATION;
D O I
10.1371/journal.pone.0303217
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background To address the numerous unmeet clinical needs, in recent years several Machine Learning models applied to medical images and clinical data have been introduced and developed. Even when they achieve encouraging results, they lack evolutionary progression, thus perpetuating their status as autonomous entities. We postulated that different algorithms which have been proposed in the literature to address the same diagnostic task, can be aggregated to enhance classification performance. We suggested a proof of concept to define an ensemble approach useful for integrating different algorithms proposed to solve the same clinical task.Methods The proposed approach was developed starting from a public database consisting of radiomic features extracted from CT images relating to 535 patients suffering from lung cancer. Seven algorithms were trained independently by participants in the AI4MP working group on Artificial Intelligence of the Italian Association of Physics in Medicine to discriminate metastatic from non-metastatic patients. The classification scores generated by these algorithms are used to train SVM classifier. The Explainable Artificial Intelligence approach is applied to the final model. The ensemble model was validated following an 80-20 hold-out and leave-one-out scheme on the training set.Results Compared to individual algorithms, a more accurate result was achieved. On the independent test the ensemble model achieved an accuracy of 0.78, a F1-score of 0.57 and a log-loss of 0.49. Shapley values representing the contribution of each algorithm to the final classification result of the ensemble model were calculated. This information represents an added value for the end user useful for evaluating the appropriateness of the classification result on a particular case. It also allows us to evaluate on a global level which methodological approaches of the individual algorithms are likely to have the most impact.Conclusion Our proposal represents an innovative approach useful for integrating different algorithms that populate the literature and which lays the foundations for future evaluations in broader application scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine learning used for simulation of MitraClip intervention: A proof-of-concept study
    Dabiri, Yaghoub
    Mahadevan, Vaikom S.
    Guccione, Julius M.
    Kassab, Ghassan S.
    FRONTIERS IN GENETICS, 2023, 14
  • [2] Application of machine learning models to animal health pharmacovigilance: A proof-of-concept study
    Whittle, Edward
    Novotny, Mark J.
    McCaul, Sean P.
    Moeller, Fabian
    Junk, Malte
    Giraldo, Camilo
    O'Gorman, Michael
    de Chenu, Christian
    Dzavan, Pavol
    JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS, 2023, 46 (06) : 393 - 400
  • [3] Machine Learning Facial Emotion Classifiers in Psychotherapy Research: A Proof-of-Concept Study
    Steppan, Martin
    Zimmermann, Ronan
    Furer, Lukas
    Southward, Matthew
    Koenig, Julian
    Kaess, Michael
    Kleinbub, Johann Roland
    Roth, Volker
    Schmeck, Klaus
    PSYCHOPATHOLOGY, 2024, 57 (03) : 159 - 168
  • [4] Machine learning is the key to diagnose COVID-19: a proof-of-concept study
    Cedric Gangloff
    Sonia Rafi
    Guillaume Bouzillé
    Louis Soulat
    Marc Cuggia
    Scientific Reports, 11
  • [5] Machine learning for the prediction of post-ERCP pancreatitis risk: A proof-of-concept study
    Archibugi, Livia
    Ciarfaglia, Gianmarco
    Cardenas-Jaen, Karina
    Poropat, Goran
    Korpela, Taija
    Maisonneuve, Patrick
    Aparicio, Jose R.
    Casellas, Juan Antonio
    Arcidiacono, Paolo Giorgio
    Mariani, Alberto
    Stimac, Davor
    Hauser, Goran
    Udd, Marianne
    Kylanpaa, Leena
    Rainio, Mia
    Di Giulio, Emilio
    Vanella, Giuseppe
    Lohr, Johannes Matthias
    Valente, Roberto
    Arnelo, Urban
    Fagerstrom, Niklas
    De Pretis, Nicolo
    Gabbrielli, Armando
    Brozzi, Lorenzo
    Capurso, Gabriele
    de-Madaria, Enrique
    DIGESTIVE AND LIVER DISEASE, 2023, 55 (03) : 387 - 393
  • [6] Machine Learning Decision Support for Detecting Lipohypertrophy With Bedside Ultrasound: Proof-of-Concept Study
    Bandari, Ela
    Beuzen, Tomas
    Habashy, Lara
    Raza, Javairia
    Yang, Xudong
    Kapeluto, Jordanna
    Meneilly, Graydon
    Madden, Kenneth
    JMIR FORMATIVE RESEARCH, 2022, 6 (05)
  • [7] Machine Learning to Identify Metabolic Subtypes of Obesity: A Multi-Center Study
    Lin, Ziwei
    Feng, Wenhuan
    Liu, Yanjun
    Ma, Chiye
    Arefan, Dooman
    Zhou, Donglei
    Cheng, Xiaoyun
    Yu, Jiahui
    Gao, Long
    Du, Lei
    You, Hui
    Zhu, Jiangfan
    Zhu, Dalong
    Wu, Shandong
    Qu, Shen
    FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [8] Machine Learning Enables Real-Time Proactive Quality Control: A Proof-Of-Concept Study
    Honda, T.
    Yamazaki, A.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
  • [9] Machine learning enables prediction of cardiac amyloidosis by routine laboratory parameters: a proof-of-concept study
    Agibetov, A.
    Seirer, B.
    Theresa-Marie, D.
    Matthias, K.
    Dalos, D.
    Rettl, R.
    Duca, F.
    Lore, S.
    Agis, H.
    Kain, R.
    Michaela, A.
    Binder, C.
    Mascherbauer, J.
    Hengstenberg, C.
    Samwald, M.
    Dorffner, G.
    Bonderman, D.
    WIENER KLINISCHE WOCHENSCHRIFT, 2020, 132 : S167 - S168
  • [10] Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study
    Agibetov, Asan
    Seirer, Benjamin
    Dachs, Theresa-Marie
    Koschutnik, Matthias
    Dalos, Daniel
    Rettl, Rene
    Duca, Franz
    Schrutka, Lore
    Agis, Hermine
    Kain, Renate
    Auer-Grumbach, Michela
    Binder, Christina
    Mascherbauer, Julia
    Hengstenberg, Christian
    Samwald, Matthias
    Dorffner, Georg
    Bonderman, Diana
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (05)