Portfolio optimization with relative tail risk

被引:0
|
作者
Kim, Young Shin [1 ]
Fabozzi, Frank J. [2 ]
机构
[1] SUNY Stony Brook, Coll Business, Stony Brook, NY 11794 USA
[2] Johns Hopkins Univ, Carey Business Sch, Baltimore, MD USA
关键词
Portfolio optimization; Relative tail risk; Normal tempered stable model; CoVaR; CoCVaR; Marginal contribution to risk;
D O I
10.1007/s10479-024-06204-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes analytic forms of portfolio conditional value at risk (CoVaR) and the mean of the portfolio loss conditional on it being in financial distress (CoCVaR) on the normal tempered stable market model. Since CoCVaR captures the relative risk of the portfolio with respect to a benchmark return, we apply it to relative portfolio optimization. Moreover, we derive analytic forms for the marginal contribution to CoVaR and the marginal contribution to CoCVaR. We discuss the Monte-Carlo simulation method for calculating CoCVaR and the marginal contributions of CoVaR and CoCVaR. We provide an empirical illustration to show relative portfolio optimization with 30 stocks included in the Dow Jones Industrial Average under distressed conditions. Finally, we apply the risk budgeting method to reduce the CoVaR and CoCVaR of the portfolio based on the marginal contributions to CoVaR and CoCVaR.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Uncertain random portfolio optimization model with tail value-at-risk
    Qiqi Li
    Zhongfeng Qin
    Yingchen Yan
    [J]. Soft Computing, 2022, 26 : 9385 - 9394
  • [2] Uncertain random portfolio optimization model with tail value-at-risk
    Li, Qiqi
    Qin, Zhongfeng
    Yan, Yingchen
    [J]. SOFT COMPUTING, 2022, 26 (18) : 9385 - 9394
  • [3] Crypto portfolio optimization through lens of tail risk and variance measures
    Tomic, Bojan
    Zikovic, Sasa
    Jovanovic, Lorena
    [J]. ZBORNIK RADOVA EKONOMSKOG FAKULTETA U RIJECI-PROCEEDINGS OF RIJEKA FACULTY OF ECONOMICS, 2022, 40 (02): : 297 - 312
  • [4] Portfolio Construction and Tail Risk
    Downing, Chris
    Madhavan, Ananth
    Ulitsky, Alex
    Singh, Ajit
    [J]. JOURNAL OF PORTFOLIO MANAGEMENT, 2015, 42 (01): : 85 - 102
  • [5] Portfolio optimization in the presence of tail correlation
    Ben Abdelaziz, Fouad
    Chibane, Messaoud
    [J]. ECONOMIC MODELLING, 2023, 122
  • [6] Tail Risk and Robust Portfolio Decisions
    Jin, Xing
    Luo, Dan
    Zeng, Xudong
    [J]. MANAGEMENT SCIENCE, 2021, 67 (05) : 3254 - 3275
  • [7] Estimating portfolio risk for tail risk protection strategies
    Happersberger, David
    Lohre, Harald
    Nolte, Ingmar
    [J]. EUROPEAN FINANCIAL MANAGEMENT, 2020, 26 (04) : 1107 - 1146
  • [8] Distributional Bounds for Portfolio Risk with Tail Dependence
    So, Kunio
    Imai, Junichi
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (03) : 795 - 816
  • [9] Distributional Bounds for Portfolio Risk with Tail Dependence
    Kunio So
    Junichi Imai
    [J]. Methodology and Computing in Applied Probability, 2015, 17 : 795 - 816
  • [10] The use of the tail dependence function for high quantile risk measure analysis: an application to portfolio optimization
    Salazar Flores, Yuri
    Diaz Hernandez, Adan
    Alberto Quezada-Tellez, Luis
    Nolasco Jauregui, Oralia
    [J]. APPLIED ECONOMICS, 2023, 55 (37) : 4289 - 4303